Learning context-sensitive languages from linear structural information

José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia

http://www.dsic.upv.es/users/tlcc/tlcc.html

<u>Outline</u>

- 1. Introducing the Watson-Crick Finite Automaton (WKFA)
- 2. A representation theorem for languages accepted by WKFA
- 3. Characterizing local languages in WKFA
- 4. From local WKFA to local FA
- 5. The learning algorithm: correctness and complexity
- 6. Research in progress
- 7. Conclusions and Future Research

Introducing the WKFA (I)

A Watson-Crick Finite Automaton (WKFA)

$$\boldsymbol{M} = (V, \boldsymbol{\gamma}, \boldsymbol{K}, \boldsymbol{s}_0, \boldsymbol{F}, \boldsymbol{\delta})$$

V, K disjoint alphabets (symbols and states) $\gamma \subseteq V \times V$ (symmetric relation of complementarity) $s_0 \in K$ (initial state) $F \subseteq K$ (final states) $\delta : K \times \begin{bmatrix} V^* \\ V^* \end{bmatrix} \rightarrow \mathcal{P}(K)$ (transition function)

Introducing the WKFA (II)

<u>Upper strand language</u> $M = (V, \gamma, K, s_0, F, \delta)$

$$\mathbf{L}_{\mathbf{u}}(M) = \{ w_1 \in V^* : \mathbf{s}_0 \quad \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \xrightarrow{*} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \mathbf{s}_{\mathbf{f}}, \ \mathbf{s}_{\mathbf{f}} \in F, \mathbf{w}_2 \in V^*, \gamma(w_1) = \gamma(w_2) \}$$

 $L_m(M)$ will denote the double stranded language accepted by M

REG \subset **AWK(u)** \subset **CS AWK(u) and CF are not comparable** $L = \{ ww^r : w \in \Sigma^* \} \notin AWK(u)$ $L = \{ a^n b^n c^n : n \ge 0 \} \in AWK(u)$

<u>A Representation Theorem</u>

Theorem (Sempere, 2004)

Every double stranded language accepted by an arbitrary WKFA is the result of the intersection between a linear language and an even linear one.

1.
$$s \rightarrow u_1 s' u_2^r$$
 iff $s' \in \delta(s, \begin{bmatrix} u_1 \\ u_2 \end{bmatrix})$

2. $s \rightarrow \#$ iff $s \in F$

1. $\forall (a,b) \in \gamma \ S \rightarrow a \ S \ b$ 2. $S \rightarrow \#$

<u>An example</u>

$$\delta(q_{0}, \begin{pmatrix} a \\ \lambda \end{pmatrix}) = \{q_{a}\} \qquad \delta(q_{a}, \begin{pmatrix} a \\ \lambda \end{pmatrix}) = \{q_{a}\} \qquad \delta(q_{a}, \begin{pmatrix} b \\ a \end{pmatrix}) = \{q_{b}\} \qquad \delta(q_{b}, \begin{pmatrix} b \\ a \end{pmatrix}) = \{q_{b}\}$$
$$\delta(q_{b}, \begin{pmatrix} c \\ b \end{pmatrix}) = \{q_{c}\} \qquad \delta(q_{c}, \begin{pmatrix} c \\ b \end{pmatrix}) = \{q_{c}\} \qquad \delta(q_{c}, \begin{pmatrix} \lambda \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} \lambda \\ c \end{pmatrix}) = \{q_{f}\}$$

а	a	a	b	b	b	С	С	С
а	а	a	b	b	b	С	С	С

The linear grammar

The even linear grammar

 $\begin{array}{l} q_{0} \rightarrow a \ q_{a} \\ q_{b} \rightarrow b \ q_{b} \ a \ | \ c \ q_{c} \ b \\ q_{f} \rightarrow q_{f} \ c \ | \ \# \end{array}$

$$\begin{array}{c} q_a \rightarrow a \; q_a \mid b \; q_b \; a \\ q_c \rightarrow c \; q_c \; b \mid q_f \; c \end{array}$$

 $S \rightarrow a S a | b S b |$ c S c | #

 $\mathbf{L} = \{ a^n b^n c^n : n \ge 0 \}$

Local Testability in the Strict Sense

Let Σ be an alphabet and k > 0. We take I_k , $F_k \subseteq \Sigma^{\leq k-1}$ and $T_k \subseteq \Sigma^k$

We will say that a language L is k-testable in the strict sense if the following equation holds

$$L \cap \Sigma^{k-1}\Sigma^{\star} = I_k \Sigma^{\star} \cap \Sigma^{\star}F_k - \Sigma^{\star}T_k \Sigma^{\star}$$

- Every k-testable language in the strict sense is regular for any k > 0
- The hierarchy of k-testable languages in the strict sense is infinite
- The class of k-testable languages in the strict sense will be denoted by k-LTSS
- The class of testable languages in the strict sense will be denoted by LTSS
- The class k-LTSS can be efficiently learned from positive data (García *et al.* 1990: Algorithm **KTSS**)

<u>A reduction to regular languages</u> (I)

From linear languages to even linear languages

Every linear grammar can be transformed into an even linear one

 $A \rightarrow w$ $A \rightarrow u B v \text{ with } |u| = |v|$ $A \rightarrow u B v \text{ with } |u| < |v|$ $A \rightarrow u B v \text{ with } |u| > |v|$

 $A \rightarrow w$ $A \rightarrow u B v$ $A \rightarrow u@^{|v|-|u|} B v$ $A \rightarrow u B v@^{|u|-|v|}$

<u>Example</u>

 $S \rightarrow aAbb \mid aaBb$ $A \rightarrow aAbb \mid \lambda$ $B \rightarrow aaBb \mid \lambda$ $S \rightarrow a@Abb | aaBb@$ $A \rightarrow a@Abb | \lambda$ $B \rightarrow aaBb@ | \lambda$

<u>A reduction to regular languages</u> (II)

From even linear languages to regular languages (Sempere and García, 1994)

The $\boldsymbol{\sigma}$ transformation

$$\begin{aligned} & \cdot \sigma(\lambda) = \lambda \\ & \cdot (\forall \ a \in \Sigma) \ \sigma(a) = a \\ & \cdot (\forall a, b \in \Sigma) \ (\forall \ x \in \Sigma^*) \ \sigma(axb) = [ab] \ \sigma(x) \\ & \cdot \sigma(L) = \{ \ \sigma(x) : x \in L \} \end{aligned}$$

If L is an even linear language then $\sigma(L)$ is regular

 $\sigma^{-1}(L)$ can be deduced from $\sigma(L)$

Example $S \rightarrow aAb \mid bBa \mid a$ $A \rightarrow aAb \mid \lambda$ $B \rightarrow bBa \mid \lambda$ [ab] [ab]

Local testability in the double strand

We will say that $L_m(M)$ is in k-LTSS if L(A) is in k-LTSS

The hierarchy of testable languages L(A) is inherited with respect to the languages $L_m(M)$

AWK^{KLTSS} will denote the class of upper strand languages accepted by WKFA with double stranded languages in k-LTSS

 $\mathbf{L} = \{ a^n b^n c^n : n \ge 0 \} \text{ is in } AWK_u^{2LTSS}$

$$\delta(q_{0}, \begin{pmatrix} a \\ \lambda \end{pmatrix}) = \{q_{a}\} \qquad \delta(q_{a}, \begin{pmatrix} a \\ \lambda \end{pmatrix}) = \{q_{a}\} \qquad \delta(q_{a}, \begin{pmatrix} b \\ a \end{pmatrix}) = \{q_{b}\} \qquad \delta(q_{b}, \begin{pmatrix} b \\ a \end{pmatrix}) = \{q_{b}\} \qquad \delta(q_{b}, \begin{pmatrix} c \\ b \end{pmatrix}) = \{q_{c}\} \qquad \delta(q_{c}, \begin{pmatrix} c \\ b \end{pmatrix}) = \{q_{c}\} \qquad \delta(q_{c}, \begin{pmatrix} \lambda \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} \lambda \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}\} \qquad \delta(q_{f}, \begin{pmatrix} c \\ c \end{pmatrix}) = \{q_{f}$$

The linear grammar

The learning scheme

Input: A finite sample of linear structural duplicated strings S defined over Σ

Output: A WKFA A such that $S^+ \subseteq L_u(A)$

Method:

(1)
$$S_{ell} = ell(S)$$

(2) $S_{\sigma} = \sigma(S_{ell})$
(3) $A_{r} = KTSS(S_{\sigma})$
(4) $G_{ell} = \sigma^{-1}(A_{r})$
(5) $G_{lin} = ell^{-1}(G_{ell})$
(6) $A = WKFA(G_{lin})$ where $\gamma = \{ (a, a) : a \in \Sigma \}$
(7) Return(A)

EndMethod.

(S⁺ denotes the upper strand strings induced by S)

<u>An example</u>

- $S = \{(a(b(c((\#)c)b)a)), (a(a(b(b(c(c(((\#)c)c)b)b)a)a)))\}$
- S_{ell} = { abc@#cba@, aabbcc@@#ccbbaa@@}
- S_σ = { [a@][ba][cb][@c][#], [a@][a@][ba][ba][cb][@c][@c][#] }
- S⁺ = { abc, aabbcc}
- $A_r = KTSS(S_\sigma)$ (k=2)

<u>Correctness and complexity</u>

Proposition. The proposed algorithm runs in polynomial time with the size of the input sample S

Proposition. AWK_{u}^{KLTSS} is identifiable in the limit from only positive structural information

<u>Research in progress</u> (generalizing the learning scheme)

Input: A finite sample of linear structural duplicated strings S defined over Σ

Output: A WKFA A such that $S^+ \subseteq L_u(A)$

Method:

(1)
$$S_{ell} = ell(S)$$

(2) $S_{\sigma} = \sigma(S_{ell})$
(3) $A_r = LearningRegPos(S_{\sigma})$
(4) $G_{ell} = \sigma^{-1}(A_r)$
(5) $G_{lin} = ell^{-1}(G_{ell})$
(6) $A = WKFA(G_{lin})$ where $\gamma = \{ (a, a) : a \in \Sigma \}$
(7) Return(A)

EndMethod.

Q: How does LearningRegPos characterize subclasses of CS?

Conclusions

• New computation models influenced by DNA and cellular computing give a new representation space for Grammatical Inference (sticker systems, splicing systems, P systems, etc.)

• The new models allow the inference of larger language classes by using well known GI methods (in this case linear languages and reductions to regular ones)

Future research

• Is it possible GI "in vitro" or "in vivo"?

• Is it enough the use of linear languages to infer larger classes of recursively enumerable languages ?

• Can duplication and complementarity be generalized as an input interface for GI ?