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Outline

General SMT
=

linguistically analyzed corpora
+

structure aware machine learning algorithms



Some problems with machine translation
Is machine translation possible at all ?

f= Ich werde Ihnen die entsprechenden Anmerkungen
aushändigen

e= I will pass on to you the corresponding comments
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Introducing Phrase-Based Statistical Machine Translation

1. take a set of parallel sentences (bitext)
I align each pair (f,e), word for word
I train translation model: the “phrase” table {(f , e)}

2. take a set of monolingual texts
I train statistical target language model

3. make sure to tune your system
4. translate f = solve

argmax
e∈E

s(e, f) =
K∑

k=1

λkFk (e, f)

5. and get some numbers
6. not happy ? goto 1
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Take a set of parallel sentences

I bilingual corpus, per sentence alignment

f= Pourquoi donc les producteurs d’armes de l’UE devraient-ils
s’enrichir sur le dos de personnes innocentes ?
e= So why should EU arms producers profit at the expense of
innocent people ?

I Main sources:
I documents from multilingual institutions, literature, touristic

guides, technical documentations
I news, web sites, blogs, speech transcripts

I Not enough ? Mine comparable corpora (eg. [26])

Large corpora available, yet data scarcity still a serious
bottleneck
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Training 1.a: build word alignments
Local reordering within the noun phrase
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A more noisy case
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Training 1.a: build word alignments

I asymmetric (= many-to-one) alignments (IBM1-IBM5 [6],
HMMs [36])

I train: estimate P(a, f|e) (EM like)
I align: a∗ = argmax P(a|f, e) = argmax P(a, f|e)
I translate:

e∗ = argmaxe P(f|e)P(e) = argmaxe P(e) argmaxa P(a, f|e)

I public domain implementations (Giza++ [28] ; MTTK [13])
I discriminative training (and many more features) helps a

bit [24, 1, 4]
I but supervision data is scarce and unreliable

for asymmetric models, an almost solved issue ?



Training 1.a: build word alignments

I asymmetric (= many-to-one) alignments (IBM1-IBM5 [6],
HMMs [36])

I train: estimate P(a, f|e) (EM like)
I align: a∗ = argmax P(a|f, e) = argmax P(a, f|e)
I translate:

e∗ = argmaxe P(f|e)P(e) = argmaxe P(e) argmaxa P(a, f|e)

I public domain implementations (Giza++ [28] ; MTTK [13])
I discriminative training (and many more features) helps a

bit [24, 1, 4]
I but supervision data is scarce and unreliable

for asymmetric models, an almost solved issue ?



Training 1.a: build word alignments

I asymmetric (= many-to-one) alignments (IBM1-IBM5 [6],
HMMs [36])

I train: estimate P(a, f|e) (EM like)
I align: a∗ = argmax P(a|f, e) = argmax P(a, f|e)
I translate:

e∗ = argmaxe P(f|e)P(e) = argmaxe P(e) argmaxa P(a, f|e)

I public domain implementations (Giza++ [28] ; MTTK [13])
I discriminative training (and many more features) helps a

bit [24, 1, 4]
I but supervision data is scarce and unreliable

for asymmetric models, an almost solved issue ?



Training 1.a: build word alignments

I asymmetric (= many-to-one) alignments (IBM1-IBM5 [6],
HMMs [36])

I train: estimate P(a, f|e) (EM like)
I align: a∗ = argmax P(a|f, e) = argmax P(a, f|e)
I translate:

e∗ = argmaxe P(f|e)P(e) = argmaxe P(e) argmaxa P(a, f|e)

I public domain implementations (Giza++ [28] ; MTTK [13])
I discriminative training (and many more features) helps a

bit [24, 1, 4]
I but supervision data is scarce and unreliable

for asymmetric models, an almost solved issue ?



Training 1.a: build word alignments

I asymmetric (= many-to-one) alignments (IBM1-IBM5 [6],
HMMs [36])

I train: estimate P(a, f|e) (EM like)
I align: a∗ = argmax P(a|f, e) = argmax P(a, f|e)
I translate:

e∗ = argmaxe P(f|e)P(e) = argmaxe P(e) argmaxa P(a, f|e)

I public domain implementations (Giza++ [28] ; MTTK [13])
I discriminative training (and many more features) helps a

bit [24, 1, 4]
I but supervision data is scarce and unreliable

for asymmetric models, an almost solved issue ?



Training 1.a: build word alignments

I asymmetric (= many-to-one) alignments (IBM1-IBM5 [6],
HMMs [36])

I train: estimate P(a, f|e) (EM like)
I align: a∗ = argmax P(a|f, e) = argmax P(a, f|e)
I translate:

e∗ = argmaxe P(f|e)P(e) = argmaxe P(e) argmaxa P(a, f|e)

I public domain implementations (Giza++ [28] ; MTTK [13])
I discriminative training (and many more features) helps a

bit [24, 1, 4]
I but supervision data is scarce and unreliable

for asymmetric models, an almost solved issue ?



Training 1.a: build word alignments

I asymmetric (= many-to-one) alignments (IBM1-IBM5 [6],
HMMs [36])

I train: estimate P(a, f|e) (EM like)
I align: a∗ = argmax P(a|f, e) = argmax P(a, f|e)
I translate:

e∗ = argmaxe P(f|e)P(e) = argmaxe P(e) argmaxa P(a, f|e)

I public domain implementations (Giza++ [28] ; MTTK [13])
I discriminative training (and many more features) helps a

bit [24, 1, 4]
I but supervision data is scarce and unreliable

for asymmetric models, an almost solved issue ?



Training 1.a: build word alignments

I asymmetric (= many-to-one) alignments (IBM1-IBM5 [6],
HMMs [36])

I train: estimate P(a, f|e) (EM like)
I align: a∗ = argmax P(a|f, e) = argmax P(a, f|e)
I translate:

e∗ = argmaxe P(f|e)P(e) = argmaxe P(e) argmaxa P(a, f|e)

I public domain implementations (Giza++ [28] ; MTTK [13])
I discriminative training (and many more features) helps a

bit [24, 1, 4]
I but supervision data is scarce and unreliable

for asymmetric models, an almost solved issue ?



Training 1.a: build word alignments

I asymmetric (= many-to-one) alignments (IBM1-IBM5 [6],
HMMs [36])

I train: estimate P(a, f|e) (EM like)
I align: a∗ = argmax P(a|f, e) = argmax P(a, f|e)
I translate:

e∗ = argmaxe P(f|e)P(e) = argmaxe P(e) argmaxa P(a, f|e)

I public domain implementations (Giza++ [28] ; MTTK [13])
I discriminative training (and many more features) helps a

bit [24, 1, 4]
I but supervision data is scarce and unreliable

for asymmetric models, an almost solved issue ?



Training 1.b : accumulate “phrases” and their statistics
f= michael geht davon aus, dass er im hause bleibt
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Training 1.b : accumulate “phrases” and their statistics

I translation model = “phrase” table {(e, f ), w(e, f ) = P(f |e)}
I crudely heuristic and very noisy a real-world PT

I forced alignment of non aligned words
I non litteral translations

I sparsity: smoothing P(f |e) = N(e,f )
N(e) helps [40, 15]

I linguistics does not help [20]
I size an issue ? pruning helps runtimes [16]
I size NOT an issue ? Use gappy phrases [9]

The largest the phrase table, the better the translation
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Training 2: learn a target language model
The same old story

I n-gram language models
I large span (≥ 5-gram) models help
I more training data helps...
I ... much more than smart smoothing
I ... that can’t be computed anyway Results from [5]

scaling up [10, 33] more important than modeling ?
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Training 3: tune the score function

Translation score
s(e, f) =

K∑
k=1

λkFk (e, f)

where Fk (e, f) corresponds to:
translation models, language model, distortion models,
length model, segmentation model, etc

I use held-out data D to optimize weights {λk , k = 1...K}

λ∗ = argmin
λ

LOSS(D, λ) [27]

I LOSS() typically not differentiable in λ

doing in right makes a difference [8, 25]
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I high performance, fast decoding doable Monotonic search
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Get some numbers
Evaluating machine translation

I subjective evaluation is very costly
I objective evaluation is challenging
I a fragile concensus: BLEU [29]

I measures the surface similarity with reference translation(s)
I as the geometric mean of the n-gram precision

I am feeling good
Ref1: I am happy

Ref2: I am feeling very good

p1 = 1 p2 = 2
3 p3 = 1

2 p4 = 0
1

an active research topic, many proposals are on the table
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A step back: finite-state SMT

I phrase-table lookup [pt ] is finite-state a simple phrase table

I n-gram models lm can be implemented as weighted fSA
I monotonic decode of f:

e∗ = bestpath(π2(f ◦ pt) ◦ lm) [7]
I decode with reordering

e∗ = bestpath(π2(perm(f) ◦ pt) ◦ lm) [3]

efficient implementations, scalability, training procedures,
non-deterministic input-outputs, integration of various

knowledge-sources [18, 22]

How to model perm(f) ?



A step back: finite-state SMT

I phrase-table lookup [pt ] is finite-state a simple phrase table

I n-gram models lm can be implemented as weighted fSA
I monotonic decode of f:

e∗ = bestpath(π2(f ◦ pt) ◦ lm) [7]
I decode with reordering

e∗ = bestpath(π2(perm(f) ◦ pt) ◦ lm) [3]

efficient implementations, scalability, training procedures,
non-deterministic input-outputs, integration of various

knowledge-sources [18, 22]

How to model perm(f) ?



A step back: finite-state SMT

I phrase-table lookup [pt ] is finite-state a simple phrase table

I n-gram models lm can be implemented as weighted fSA
I monotonic decode of f:

e∗ = bestpath(π2(f ◦ pt) ◦ lm) [7]
I decode with reordering

e∗ = bestpath(π2(perm(f) ◦ pt) ◦ lm) [3]

efficient implementations, scalability, training procedures,
non-deterministic input-outputs, integration of various

knowledge-sources [18, 22]

How to model perm(f) ?



A step back: finite-state SMT

I phrase-table lookup [pt ] is finite-state a simple phrase table

I n-gram models lm can be implemented as weighted fSA
I monotonic decode of f:

e∗ = bestpath(π2(f ◦ pt) ◦ lm) [7]
I decode with reordering

e∗ = bestpath(π2(perm(f) ◦ pt) ◦ lm) [3]

efficient implementations, scalability, training procedures,
non-deterministic input-outputs, integration of various

knowledge-sources [18, 22]

How to model perm(f) ?



A step back: finite-state SMT

I phrase-table lookup [pt ] is finite-state a simple phrase table

I n-gram models lm can be implemented as weighted fSA
I monotonic decode of f:

e∗ = bestpath(π2(f ◦ pt) ◦ lm) [7]
I decode with reordering

e∗ = bestpath(π2(perm(f) ◦ pt) ◦ lm) [3]

efficient implementations, scalability, training procedures,
non-deterministic input-outputs, integration of various

knowledge-sources [18, 22]

How to model perm(f) ?



A step back: finite-state SMT

I phrase-table lookup [pt ] is finite-state a simple phrase table

I n-gram models lm can be implemented as weighted fSA
I monotonic decode of f:

e∗ = bestpath(π2(f ◦ pt) ◦ lm) [7]
I decode with reordering

e∗ = bestpath(π2(perm(f) ◦ pt) ◦ lm) [3]

efficient implementations, scalability, training procedures,
non-deterministic input-outputs, integration of various

knowledge-sources [18, 22]

How to model perm(f) ?



Approaches to reordering
Some attempts at modeling perm(f)

I brute-force approach try all permutations

+ pruning based on distortion weights

I a priori defined permutations
I define T , perm(f) = f ◦ T finite-state models

I define G, perm(f) = {f′, S
?
⇒ (f ; f ′)} context-free models

I empirically defined permutations
I learn/train T , perm(f) = f ◦ T finite-state models

I learn/train T , perm(f) = {f′, S
?
⇒ (f ; f ′)} context-free models

I hand-crafted reordering rules a man-made model

I any combination thereof

Small to mild gains with respect to monotonic translation; huge
gap in performance between “easy” and “difficult” language

pairs.
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PBT better than word based models

I idioms, terms, multi-word units
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I “local” reordering decisions
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I model “local” context and agreement
the international conference, la conférence internationale

I allies simplicity, speed, and robustness
I matching large phrases yield high BLEU scores
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I contiguous phrases miss important generalizations
I only “local” syntax on the target side (n-gram models)
I phrase weighting and selection is context-free
I no global reordering model
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Exhausive search
I f has a finite number of permutations
I hence represented by a finite-state automaton
I yet can’t compute perm(f) with a finite-state device

Finite-state representation of perm(123)
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Heuristic search

I moves allowed within fixed boundaries
I small moves prefered over longer moves
I standard model:

I distortion: d(i) = f (start(fi)− end(fi−1)− 1)
I P(d(i) = k) ∝ exp(−αk)
I ∀i , d(i) < dmax

I (costly) extension: lexicalized reordering weights [34]

back



IBM style constraints
I choose one the first k remaining tokens

0 1 2 3 4 5 6 7 8 9
t=4
• ◦ • • ◦ • ◦ ◦ ? ?
output = 0,2,3,5
t= 5
• • • • ◦ • ◦ ◦ ◦ ?
output = 0,2,3,5,1

• ◦ • • • • ◦ ◦ ◦ ?
output = 0,2,3,5,4

• ◦ • • ◦ • • ◦ ◦ ?
current output 0,2,3,5,6

I additional constraints:
I moves take place within a fixed size window;
I restrict the number of simultaneous gaps;

back
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The IBM permutations of a b c d for k = 2
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A local approach
see [21] for details

I allows permutations of neighbouring phrases
I within a bounded window
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A local approach
see [21] for details

I allows permutations of neighbouring phrases
I within a bounded window

One state ∀a:A, b:B ∈ pt , ?:? is a copy loop
Exchange adjacent phrases
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A local approach
see [21] for details

I allows permutations of neighbouring phrases
I within a bounded window

5 states ∀a:A, b:Bc:C ∈ pt , ?:? is a copy loop
Permute triplets of phrases

back



Inversion Transduction Grammars (ITGs)
A CF model for permutations

Definition (from [37])
An Inversion Transduction Grammar (ITG) is a 5-uple
G = (V ,Σ, Γ, S, P), where the context-free productions:

I terminals come in pairs a/b ∈ (Σ ∪ {ε})× (Γ ∪ {ε})
I right-hand sides are explicitly oriented:

I A → [BC]: left-to-right order in both derivations
I A →< BC >: left-to-right in one language, right-to-left in the

other

back



ITG’s permutations

Bracketing grammar
Let G have productions X → [XX ] |< XX >, and X → e; e,∀e;

perm(w1 . . . wn) = {v1 . . . vn | X
?
⇒ w1...wn; v1...vn}

back
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ITG’s permutations

Bracketing grammar
Let G have productions X → [XX ] |< XX >, and X → e; e,∀e;

perm(w1 . . . wn) = {v1 . . . vn | X
?
⇒ w1...wn; v1...vn}

Complements

I a strict subset of all permutations
I combinatorily large O(K n) [39], yet � n!

I can be searched in polynomial time [39, 14]

back



Linguistic reordering

I use linguistically motivated transformations rules eg. [11]

Verb Initial Rule
In any verb phrase, find the head of the phrase, and move it
into the initial position within the verb phrase

f= Ich werde Ihnen die entsprechenden Anmerkungen aushändigen
f’ = Ich werde aushändigen ihnen die entsprechenden Anmerkungen
e= I will pass on to you the corresponding comments

I deterministic process ⇒ transform dataset prior to learning
I requirements: a source parser + linguistic rules (for each

pair)

back



Learning reordering rules
see eg. [38, 12]

I training procedure
I build symmetric alignments and extract phrases
I learn “within-phrase” reordering rules
I compose rules as a non-deterministic reordering

transducer R
R = ©i(ri ∪ Id)

I decoding uses perm(f) = π1(tag(f) ◦ R)

rule: NN JJ CC JJ → JJ CC JJ NN

back
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I training procedure
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I learn “within-phrase” reordering rules
I compose rules as a non-deterministic reordering

transducer R
R = ©i(ri ∪ Id)
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Extracting gappy phrases
f= tu ne veux pas dormir
e= you don’t want to sleep

you
don’t
want
to
sleep

tu ne ve
ux

pa
s

do
rm

ir

I (want ; veux) a sub-phrase of (don’t want ; ne veux pas)
I ⇒ gappy phrase N(don’t X ; ne X pas)++

I better generalization

back



Extracting gappy phrases
f=je ne le comprends plus
e= I don’t understand it anymore

I
don’t
understand
it
anymore

je ne le co
m

pr
en

d
pl

us

I same idea, with two variables
I N(don’t X1X2 anymore ; ne X2X1 plus)++

I defines a (lexicalized) reordering model

back



A hierarchical SMT system
Some innovations of [9]

I gappy phrases = rules of a synchronous CFG
I usual phrases (e; f ) yield terminating rules X → e; f
I gappy phrases (α;β) yield X → α;β
I “glue” S → SX | X
I maximum likelihood estimates (+ smoothing)

I translation within parsing

e = argmax
e∈E

λ1 log PLM(e) + λ2 log PG(f; e) + ...

I Benefits
I more (general) phrases
I reordering model
I performance [41]

I Issues
I grammar size
I search

back
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A finite-state representation of a phrase-table
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A second step back

Abstract SMT

1. get weighted local translation hypotheses from the PT
2. arrange them in a word graph
3. rescore permutations with a language model

Two steps forward

I compute weights on demand, using all available
information: SMT as EBMT [32], see also [35, 23]

I dispense with alignments in step 1, use complete sentence
as contexts
(but step 2 and 3 prove difficult [2])
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Using Terascale Language Models
Some results from [5]

Conventional back-off

P(w |h) =

{
ρ(hw) if N(hw) > 0
α(h)P(w |h) otherwise

"Stupid" (sic) Back-off

S(w |h) =

{
N(hw)P
w′ N(hw ′) if N(hw) > 0

αS(W |h) otherwise

NB. “Stupid” Back-off does not even define a probability
distribution

back



Using Terascale Language Models
Some results from [5]

target webnews web
# token 237 M 31G 1.8T
vocab size 200k 5M 16M
# ngrams 257M 21 G 300G
size (B) 2G 89G 1.8 T
time (SB) 20 min 8 hours 1 day
time (KN) 2.5 hours 2 days -

back



Using Terascale Language Models
Some results from [5]
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A real world phrase-table
Based on the en-fr Europarl

467 (en → fr) translations for “European Commission”

European Commission ||| Commission européenne
European Commission ||| Commission
European Commission ||| la Commission européenne
European Commission ||| Commission européenne ,
European Commission ||| de la Commission européenne
(...)

98 (fr → en) translations for “cultures”

cultures ||| agriculture
cultures ||| arable
cultures ||| crop production
cultures ||| cultivation
cultures ||| cultural content
cultures ||| cultural history
cultures ||| drug crops
cultures ||| farming
cultures ||| farms
cultures ||| identities
cultures ||| language
cultures ||| plants
(...)
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A real world phrase-table
Based on the en-fr Europarl

672 translations for ’!’ !!!

! ||| ! ! !
! ||| ! !
! ||| ! |||
! ||| : non !
...
! ||| , dit-on partout !
! ||| , exigez que
! ||| , exigez
! ||| , il est primordial que la
! ||| , il est primordial que
...
! ||| Messieurs , il est primordial que la
! ||| Messieurs , il est primordial
...

back



mais là-dessus je voudrais marquer sinon un
désaccord , du moins des nuances sur deux

points .

but I would like to indicate otherwise a
disagreement , at least the nuances on two

points

From Europarl 2008

back



n’ y a -t-il pas ici deux poids , deux mesures ?

is there not here two weights , two measures ?

From Europarl 2008

back



en réalité , les entrepreneurs sont plus souvent
comparables à des joueurs qui espèrent toucher

le pactole .

in reality , the entrepreneurs are more often
comparable to players who are hoping to touch

the gold mine .
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les investisseurs plus vigilants achetent déjà en
grand nombre , par exemple dans le coin de

Bansko .

investors more vigilant achetent already in great
numbers , for example in the corner of Bansko .
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l’ avocat des familles sinistrées Igor Veleba veut
obtenir de l’ hôpital de Motol un

dédommagement de 12 millions de couronnes
plus les dépens .

the lawyer of Igor Veleba affected families to
obtain the hospital Motol compensation of 12

million kronor more expense .
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