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Summary

A distributional learning algorithm
I Positive unstructured data and membership queries
I Polynomial update time
I Correct for a large class of CFLs that includes all regular

languages
I Use a context sensitive formalism
I Essentially trivial algorithm
I . . . and it works in practice.
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Why?

research goal
Find a class of languages that is efficiently learnable and
includes the natural languages

I First language acquisition (FLA)
I Positive data and MQ are a placeholder for a more realistic

probabilistic learning model
I Highly expressive models
I Mildly context sensitive
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How
Normal GI

I Given a class of representations G
I Study its learnability under various paradigms

In FLA we don’t know what the representations are but we do
know that they are learnable.

research strategy
Look for representations that are intrinsically learnable:

I real problems are computational not information theoretic
I use representations without hidden structure
I primitives must be observable

I definable in purely language theoretic terms
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Substring relations

Regular learning
Prefix suffix relation
u ∼L v iff uv ∈ L
u−1L = {w |uw ∈ L}

Contexts
A context is just a pair of strings (l , r) ∈ Σ∗ × Σ∗.
(l , r)� u = lur

Context-substring relation
(l , r) ∼L u iff lur ∈ L
C(u) = {(l , r)|lur ∈ L} = {f |f � u ∈ L}
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Distributional learning

Normal GI
For a string u, we want to predict if u ∈ L
model function u → {0, 1}

Distributional learning
model function u → C(u)
more general

I as (λ, λ)� u = u
I so (λ, λ) ∈ C(u) iff u ∈ L
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Two problems with modelling C(u)

1. Number of strings u is infinite:
I Take some finite set of primitive elements (strings) K

if u ∈ K we know about C(u)
I Plus some way of computing C(uv) from its parts

C(u), C(v)

2. C(u) may be infinite if L is infinite:
I We need some finite representation of C

A polynomial algorithm for the inference of context free languages RHUL, LIF
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Solution 1
Clark & Eyraud (2005), Clark (2006), Yoshinaka (2008)

If C(u) = C(u′) and C(v) = C(v ′) then C(uv) = C(u′v ′)

Syntactic congruence
u ≡L v iff C(u) = C(v)
Write [u] for equivalence class of u.

Finite representation/primitive elements
Congruence classes of observed substrings [u]

Basic rules give a CFG in CNF
[uv ] → [u][v ] and [a] → a
If you can tell whether C(u) = C(v) then learning is trivial!
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Problems

I We model C(u) as a finite unstructured set of congruence
classes.

I In real languages, no two words are exactly alike;
I There are a lot of congruence classes;
I Learning is very slow, and it is hard to get it right.

I The congruence classes are sets of contexts so the right
structure is a lattice. (Sestier, 1960)

Example
N ⇒∗ n, N ⇒∗ v and M ⇒∗ m, M ⇒∗ v then

I C(v) = C(n) ∪ C(m)
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Lattice structure
L = {anbn|n > 0}

(8)

a b/a a b b/(2) a a/(1)

a b b/(2) a a b/(2) b b/(1)

(0)

b/(1) a/(1)

C(a) ⊃ C(aab) but (λ, abb) ∈ C(a) \ C(aab).
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Lexical hierarchies

me/him/us/them/(7)

(2)her/(1)

it/(1)

you/(1)

(0)

(16)

my/his/our/their/(5) (7)

(4)he/she/(3)

I/(1)

we/they/(3)

Exponentially many congruence classes!
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Solution 2

How to represent the lattice of distributions?
I Take a finite set of contexts F , and consider C(w) ∩ F .
I Now we have 2|F | congruence classes!
I Underlying lattice is not distributive but it doesn’t matter.
I Underlying lattice is often infinite (if language is not

regular) but that doesn’t matter either
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Representation

We define a formalism that directly uses this lattice structure:

Lemma
For any language L and for any strings u, u′, v , v ′ if
C(u) ⊇ C(u′) and C(v) ⊇ C(v ′), then C(uv) ⊇ C(u′v ′).

C(w) ⊇
⋃
u,v :

uv=w

⋃
u′∈K :

C(u′)⊆C(u)

⋃
v ′∈K :

C(v ′)⊆C(v)

C(u′v ′) (1)
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Lattice rules

u'v'

uv

BOTTOM

u'

u

v'

v

TOP
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Lattice rules II

xy

uvw

BOTTOM

x

uv

y

w

pq

TOP

p q

u vw
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Contextual Binary Feature Grammars
Formalism

A CBFG G is a tuple 〈F , fs, P, PL,Σ〉.
I fs ∈ F is the sentence feature (λ, λ)
I Productions

I PL has x → a where x ⊆ F and a ∈ Σ.
I P has x → y , z where x , y , z ⊆ F .

I Informally: if u has features y, and v has features z, then
uv will have the features in x .

I fG is a recursive map from Σ∗ → 2F

I We want fG(u) to approximate C(u) ∩ F .
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Recursive computation

fG(λ) = ∅ (2)

fG(w) =
⋃

(c→w)∈PL

c iff |w | = 1 (3)

fG(w) =
⋃

u,v :uv=w

⋃
x→yz∈P:
y⊆fG(u)∧
z⊆fG(v)

x iff |w | > 1. (4)

This is similar to a CKY parsing algorithm: O(|w |3|P|)
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Power of BFGs

1. Include all CFGs
2. Can represent non context free languages; (almost) closed

under intersection
3. Can compactly represent languages that require

exponentially large context free grammars: the finite
language consisting of all permutations of a finite alphabet.

4. Equivalent to subclass of Range Concatenation Grammars
(Boullier, 2000)
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Writing down a grammar

Assume we have a finite set of strings K , and a finite set of
features F , and a membership oracle:

Productions P
I If u, v and uv are in K
I C(u) and C(v) combine to form C(uv)

I Add production C(uv) ∩ F → C(u) ∩ F , C(v) ∩ F

Productions PL

I For a letter a ∈ Σ, we add C(a) ∩ F → a.
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Search

I Given an oracle for the language L, and a choice for K and
F , we can write down a grammar G0(K , L, F ).

I G, the hypothesis, is a function of K and F .
I Is it easy to find the right K and F?
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Monotonicity of K
Obvious

As K increases the language increases
If K ⊆ K +, then L(G0(K , L, F )) ⊆ L(G0(K +, L, F ))

Proof: the set of productions increases as we increase the
number of examples.
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Monotonicity of F
Not so obvious

As F increases the language decreases
If F ⊆ F+, then L(G(K , L, F )) ⊇ L(G(K , L, F+))

I The features define the conditions under which we predict
a feature on the head.

I if u has y and v has features z, then we predict that uv has
some features x .
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Dyck language
example

Dyck overgeneralisation

 2  4  6  8  10  12  14  16  18  20

|K|

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

|F
|

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1
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Dyck language
example

Dyck undergeneralisation

 2  4  6  8  10  12  14  16  18  20

|K|

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

|F
|

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04
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Algorithm

Goal:
I simple algorithm to prove correctness and polynomial

efficiency
I no attempt at scalability

Basic idea
I If the language undergenerates, add some strings to the

kernel.
Go right.

I If the language overgenerates, add some contexts.
Go up.
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Algorithm
Input a sequence of strings w1, w2 . . .

1. D = {w1, . . . , wn}
2. Test set is T = Con(D)� Sub(D)

3. For every w ∈ T
3.1 If w ∈ L but not in current hypothesis; add strings to K , and

add contexts to F
3.2 If w 6∈ L but is in current hypothesis: add contexts to F

This means we are getting closer, but will it converge?
I If it has the Finite Context Property, then we can get zero

overgeneralisation
I If it has the Finite Kernel property, then we can get zero

undergeneralisation

A polynomial algorithm for the inference of context free languages RHUL, LIF
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Diagram

K

F

K0

Overgeneral

Correct

Undergeneral

Wrong
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Finite Context Property

Definition
A string u in a language L has the finite context property (FCP)
if there is a finite set of contexts Fu ⊆ C(u) such that

I For any v
I if Fu ⊆ C(v) then C(u) ⊆ C(v).

This is the inductive leap – from a finite set of evidence to an
infinite set.

I Compare substitutable languages – any string in C(u) is
enough

I Compare Adriaans context-separability – |F | = 1

A polynomial algorithm for the inference of context free languages RHUL, LIF
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Fiduciality
I More generally for a set of strings K , we say F is fiducial

for K if for any u in K and for any v if C(v) ⊃ C(u) ∩ F ,
then C(v) ⊃ C(u).

I F needs to be a function of K ; as K increases we need
more features F .

Key lemma (Lemma 8)
If F is fiducial then the BFG predicts only correct features.
fG(w) ⊂ C(w) ∩ F
Proof:

I Definition of G0 and C(uv) ∩ F → C(u) ∩ F , C(v) ∩ F
I Recursive definition of fG
I Fiduciality
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Scope of the FCP

I All regular languages have the FCP
I All substitutable languages have the FCP (of size 1)
I Therefore some non context free languages have the FCP.
{w ∈ {a, b, c}∗||w |a = |w |b = |w |c}

I There are CFLs that do not have the FCP.
e.g. L = {anb|n > 0} ∪ {ancm|n > m > 0}

Natural languages have the FCP?
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Finite kernel property

A finite set K ⊆ Σ∗ is a kernel for a language L, if for any set of
features F , L(G0(K , F , L)) ⊇ L.

I If we have a finite kernel then eventually our hypothesis will
be big enough

I All regular languages have finite kernels
I There are CFLs that do not have a finite kernel

We expect to be able to weaken this requirement to include all
CFGs.
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Result

Theorem
The algorithm identifies in the limit the class of languages with
FCP and FKP

I polynomial update time
I uses positive data plus polynomial calls to membership

oracle

Includes all regular languages, disjoint palindrome languages,
Dyck languages etc.
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Future work

I Rapid generalisation
I Use more abstract rules: f → x ∩ x ′, y ∩ y ′.
I Polynomial characteristic set
I Context sensitive languages

I Probabilistic model for PAC result
I Features that are sets of contexts
I Natural language experiments
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Conclusions

1. Distributional learning can be generalised to model the
context-substring lattice.

2. This requires a switch to a context sensitive representation
directly based on the lattice.

3. This gives rise to efficient algorithms for learning context
free and potentially context sensitive languages that have a
fairly weak property: the FCP.

4. This is linguistically very interesting, as natural languages
seem to have the FCP, and are mildly context sensitive.
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