# Polynomial-Time Identification in the Limit of $k, l$-Substitutable Context-Free Languages 

Ryo Yoshinaka

Hokkaido University

Japan

## 1. Introduction

Polynomial Identification of $\ell_{\varepsilon}, l$-SCFLs - p.2/24

## Substitutable Context-Free Languages

- Clark and Eyraud $(2005,2007)$
- Substitutability: for any strings $x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}$,

$$
x_{1} y_{1} z_{1}, x_{1} y_{2} z_{1}
$$

## Substitutable Context-Free Languages

- Clark and Eyraud $(2005,2007)$
- Substitutability: for any strings $x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}$,

$$
x_{1} y_{1} z_{1}, x_{1} y_{2} z_{1}, x_{2} y_{1} z_{2} \in L \quad \Longrightarrow \quad x_{2} y_{2} z_{2} \in L
$$

## Substitutable Context-Free Languages

- Clark and Eyraud $(2005,2007)$
- Substitutability: for any strings $x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}$,

$$
x_{1} y_{1} z_{1}, x_{1} y_{2} z_{1}, x_{2} y_{1} z_{2} \in L \quad \Longrightarrow \quad x_{2} y_{2} z_{2} \in L
$$

- Example:
- John loves Mary, John hates Mary


## Substitutable Context-Free Languages

- Clark and Eyraud $(2005,2007)$
- Substitutability: for any strings $x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}$,

$$
x_{1} y_{1} z_{1}, x_{1} y_{2} z_{1}, x_{2} y_{1} z_{2} \in L \quad \Longrightarrow \quad x_{2} y_{2} z_{2} \in L
$$

- Example:
- John loves Mary, John hates Mary, a boy loves chocolate $\Longrightarrow$ a boy hates chocolate


## Substitutable Context-Free Languages

- Clark and Eyraud $(2005,2007)$
- Substitutability: for any strings $x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}$,

$$
x_{1} y_{1} z_{1}, x_{1} y_{2} z_{1}, x_{2} y_{1} z_{2} \in L \quad \Longrightarrow \quad x_{2} y_{2} z_{2} \in L
$$

- Example:
- John loves Mary, John hates Mary, a boy loves chocolate $\Longrightarrow$ a boy hates chocolate
- the man died, the man ordered dinner, the man who was hungry died


## Substitutable Context-Free Languages

- Clark and Eyraud $(2005,2007)$
- Substitutability: for any strings $x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}$,

$$
x_{1} y_{1} z_{1}, x_{1} y_{2} z_{1}, x_{2} y_{1} z_{2} \in L \quad \Longrightarrow \quad x_{2} y_{2} z_{2} \in L
$$

- Example:
- John loves Mary, John hates Mary, a boy loves chocolate $\Longrightarrow$ a boy hates chocolate
- the man died, the man ordered dinner, the man who was hungry died
$\Longrightarrow \quad$ the man who was hungry ordered dinner


## Substitutable Context-Free Languages

- Clark and Eyraud $(2005,2007)$
- Substitutability: for any strings $x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}$,

$$
x_{1} y_{1} z_{1}, x_{1} y_{2} z_{1}, x_{2} y_{1} z_{2} \in L \quad \Longrightarrow \quad x_{2} y_{2} z_{2} \in L
$$

- Example:
- John loves Mary, John hates Mary, a boy loves chocolate $\Longrightarrow$ a boy hates chocolate
- the man died, the man ordered dinner, the man who was hungry died
$\Longrightarrow$ the man who was hungry ordered dinner
- a boy was hungry
$\Longrightarrow$ the man who loves chocolate ordered dinner


## Substitutable Context-Free Languages

- Natural languages


## Substitutable Context-Free Languages

- Natural languages
- Subclass of CFLs that is efficiently identifiable in the limit from positive data


## Substitutable Context-Free Languages

- Natural languages
- Subclass of CFLs that is efficiently identifiable in the limit from positive data
- Analogy with reversible languages (Angluin 1982)
- Zero-reversible languages:

$$
x_{1} y_{1}, x_{1} y_{2}, x_{2} y_{1} \in L \quad \Longrightarrow \quad x_{2} y_{2} \in L
$$

- Substitutable languages:

$$
x_{1} y_{1} z_{1}, x_{1} y_{2} z_{1}, x_{2} y_{1} z_{2} \in L \quad \Longrightarrow \quad x_{2} y_{2} z_{2} \in L
$$

## Reversibility Hierarchy and Substitutability

- $k$-reversible languages:

$$
x_{1} v y_{1}, x_{1} v y_{2}, x_{2} v y_{1} \in L \quad \Longrightarrow \quad x_{2} v y_{2} \in L
$$

if $|\boldsymbol{v}|=\boldsymbol{k}$.

## Reversibility Hierarchy and Substitutability

- $k$-reversible languages:

$$
x_{1} \boldsymbol{v} y_{1}, x_{1} \boldsymbol{v} y_{2}, x_{2} \boldsymbol{v} y_{1} \in L \quad \Longrightarrow \quad x_{2} \boldsymbol{v} y_{2} \in L
$$

if $|\boldsymbol{v}|=\boldsymbol{k}$.

- Substitutable languages:

$$
x_{1} y_{1} z_{1}, x_{1} y_{2} z_{1}, x_{2} y_{1} z_{2} \in L \quad \Longrightarrow \quad x_{2} y_{2} z_{2} \in L
$$

## Reversibility Hierarchy and Substitutability

- $k$-reversible languages:

$$
x_{1} v y_{1}, x_{1} v y_{2}, x_{2} v y_{1} \in L \quad \Longrightarrow \quad x_{2} v y_{2} \in L
$$

if $|\boldsymbol{v}|=\boldsymbol{k}$.

- Substitutable languages:

$$
x_{1} y_{1} z_{1}, x_{1} y_{2} z_{1}, x_{2} y_{1} z_{2} \in L \quad \Longrightarrow \quad x_{2} y_{2} z_{2} \in L
$$

- $\boldsymbol{k}$-substitutable languages?


## This Talk

- $k, l$-substitutability for $k, l \geq 0$


## This Talk

- $k$, $l$-substitutability for $k, l \geq 0$
- Polynomial-time identifiability of $k, l$-substitutable context-free languages ( $k, l$-SCFLs)


## This Talk

- $k, l$-substitutability for $k, l \geq 0$
- Polynomial-time identifiability of
$k, l$-substitutable context-free languages ( $k, l$-SCFLs)
- Outline -

1. Introduction
2. Priliminaries
3. Learning Algorithm for $k, l$-SCFLs
4. Summary and Future Work

## 2. Preliminaries

Polynomial Identification of $\ell_{\varepsilon}, l$-SCFLs $-p .7 / 24$

## $\lambda$-free Context-Free Grammars

- $\Sigma$ : alphabet, $\lambda$ : empty string,
- $v, u, w, x, y, z$ : strings over $\Sigma$
- $L \subseteq \Sigma^{*}$ : language


## $\lambda$-free Context-Free Grammars

- $\Sigma$ : alphabet, $\lambda$ : empty string,
- $v, u, w, x, y, z$ : strings over $\Sigma$
- $L \subseteq \Sigma^{*}$ : language
- CFG $G=\langle\Sigma, V, P, S\rangle$
- $\Sigma$ : terminal symbols
- $V$ : nonterminal symbols $(V \cap \Sigma=\varnothing$ )
- $\boldsymbol{P} \subseteq V \times(\boldsymbol{\Sigma} \cup \boldsymbol{V})^{+}$: production rules ( $\lambda$-free)
- $S \in V$ : start symbol
- $L(G)=\left\{w \in \Sigma^{*} \mid S \Rightarrow_{G}^{*} w\right\}$
- $\|G\|=\sum_{A \rightarrow \alpha \in P}|A \alpha|$


## Identification in the Limit from Positive Data

Strings from the target : $w_{1} \quad w_{2} \quad w_{3} \quad w_{4} \quad \ldots \in \boldsymbol{L}\left(\boldsymbol{G}_{*}\right)$


Conjectures by the learner :

- learning algorithm: $\mathcal{A}$
- learning target: $L\left(G_{*}\right)$
- positive data: $\left\langle w_{1}, w_{2}, \ldots\right\rangle$ such that $L\left(G_{*}\right)=\left\{w_{i} \mid i \in \mathbb{N}\right\}$
- conjecture: $G_{m}=\mathcal{A}\left(w_{1}, \ldots, w_{m}\right)$


## Identification in the Limit from Positive Data

Strings from the target : $w_{1} \quad w_{2} \quad w_{3} \quad w_{4} \quad \ldots \in \boldsymbol{L}\left(\boldsymbol{G}_{*}\right)$


Conjectures by the learner :

- learning algorithm: $\mathcal{A}$
- learning target: $L\left(G_{*}\right)$
- positive data: $\left\langle w_{1}, w_{2}, \ldots\right\rangle$ such that $L\left(G_{*}\right)=\left\{w_{i} \mid i \in \mathbb{N}\right\}$
- conjecture: $G_{m}=\mathcal{A}\left(w_{1}, \ldots, w_{m}\right)$


## Identification in the Limit from Positive Data

Strings from the target : $w_{1} \quad w_{2} \quad w_{3} \quad w_{4} \quad \ldots \in \boldsymbol{L}\left(\boldsymbol{G}_{*}\right)$


Conjectures by the learner : $G_{1}$

- learning algorithm: $\mathcal{A}$
- learning target: $L\left(G_{*}\right)$
- positive data: $\left\langle w_{1}, w_{2}, \ldots\right\rangle$ such that $L\left(G_{*}\right)=\left\{w_{i} \mid i \in \mathbb{N}\right\}$
- conjecture: $G_{m}=\mathcal{A}\left(w_{1}, \ldots, w_{m}\right)$


## Identification in the Limit from Positive Data

Strings from the target : $\begin{array}{lllllll}w_{1} & w_{2} & w_{3} & w_{4} & \ldots & \in L\left(\boldsymbol{G}_{*}\right)\end{array}$


Conjectures by the learner : $G_{1}$

- learning algorithm: $\mathcal{A}$
- learning target: $L\left(G_{*}\right)$
- positive data: $\left\langle w_{1}, w_{2}, \ldots\right\rangle$ such that $L\left(G_{*}\right)=\left\{w_{i} \mid i \in \mathbb{N}\right\}$
- conjecture: $G_{m}=\mathcal{A}\left(w_{1}, \ldots, w_{m}\right)$


## Identification in the Limit from Positive Data

Strings from the target : $\begin{array}{lllllll}w_{1} & w_{2} & w_{3} & w_{4} & \ldots & \in L\left(\boldsymbol{G}_{*}\right)\end{array}$


Conjectures by the learner: $G_{1} \quad G_{2}$

- learning algorithm: $\mathcal{A}$
- learning target: $L\left(G_{*}\right)$
- positive data: $\left\langle w_{1}, w_{2}, \ldots\right\rangle$ such that $L\left(G_{*}\right)=\left\{w_{i} \mid i \in \mathbb{N}\right\}$
- conjecture: $G_{m}=\mathcal{A}\left(w_{1}, \ldots, w_{m}\right)$


## Identification in the Limit from Positive Data

Strings from the target : $\begin{array}{lllllll}w_{1} & w_{2} & w_{3} & w_{4} & \ldots & \in L\left(G_{*}\right)\end{array}$


Conjectures by the learner: $\begin{array}{llllll}G_{1} & G_{2} & G_{3} & G_{4} & \ldots\end{array}$

- learning algorithm: $\mathcal{A}$
- learning target: $L\left(G_{*}\right)$
- positive data: $\left\langle w_{1}, w_{2}, \ldots\right\rangle$ such that $L\left(G_{*}\right)=\left\{w_{i} \mid i \in \mathbb{N}\right\}$
- conjecture: $G_{m}=\mathcal{A}\left(w_{1}, \ldots, w_{m}\right)$


## Identification in the Limit from Positive Data

Strings from the target : $\begin{array}{lllllll}w_{1} & w_{2} & w_{3} & w_{4} & \ldots & \in L\left(G_{*}\right)\end{array}$


Conjectures by the learner: $\begin{array}{llllll}G_{1} & G_{2} & G_{3} & G_{4} & \ldots\end{array}$

- learning algorithm: $\mathcal{A}$
- learning target: $L\left(G_{*}\right)$
- positive data: $\left\langle w_{1}, w_{2}, \ldots\right\rangle$ such that $L\left(G_{*}\right)=\left\{w_{i} \mid i \in \mathbb{N}\right\}$
- conjecture: $G_{m}=\mathcal{A}\left(w_{1}, \ldots, w_{m}\right)$
- convergence: $\exists n_{0} \in \mathbb{N} \forall m>n_{0}\left[G_{m}=G_{n_{0}}\right]$
- $\mathcal{A}$ identifies $\mathbb{G}$ in the limit from positive data iff for any positive data of any $G_{*} \in \mathbb{G}$, $\mathcal{A}$ converges to a grammar $G_{n_{0}}$ with $L\left(G_{n_{0}}\right)=L\left(G_{*}\right)$.


## Identification in the Limit from Positive Data

Strings from the target : $\begin{array}{lllllll}w_{1} & w_{2} & w_{3} & w_{4} & \ldots & \in L\left(G_{*}\right)\end{array}$


Conjectures by the learner: $\begin{array}{llllll}G_{1} & G_{2} & G_{3} & G_{4} & \ldots\end{array}$

- Polynomial Identification -
- Polynomial Time
- Computation of $G_{m}$ is done in poly-time in $\sum_{i=1}^{m}\left|w_{i}\right|$
- Polynomial Characteristic Set $\boldsymbol{K}_{G_{*}}=\left\{x_{1}, \ldots, x_{k}\right\} \subseteq L\left(G_{*}\right)$ :
- whenever $K_{G_{*}} \subseteq\left\{w_{1}, \ldots, w_{m}\right\}, \mathcal{A}$ converges to $G_{m}=G_{n_{0}}$
- $\left|\boldsymbol{K}_{G_{*}}\right|=k$ is bounded by a polynomial in $\left\|\boldsymbol{G}_{*}\right\|$


## $k, l$-Substitutable Languages

- $k, l$-substitutability: for any strings $x_{1}, z_{1}, x_{2}, z_{2}, y_{1}, y_{2}, v, u \in \Sigma^{*}$,

$$
x_{1} v y_{1} u z_{1}, x_{1} v y_{2} u z_{1}, x_{2} v y_{1} u z_{2} \in L \quad \Longrightarrow \quad x_{2} v y_{2} u z_{2} \in L
$$

$$
\text { if }|v|=k,|u|=l \text { and } v y_{1} u, v y_{2} u \neq \lambda .
$$

## $k, l$-Substitutable Languages

- $k, l$-substitutability: for any strings $x_{1}, z_{1}, x_{2}, z_{2}, y_{1}, y_{2}, v, u \in \Sigma^{*}$,

$$
x_{1} v y_{1} u z_{1}, x_{1} v y_{2} u z_{1}, x_{2} v y_{1} u z_{2} \in L \quad \Longrightarrow \quad x_{2} v y_{2} u z_{2} \in L
$$

$$
\text { if }|\boldsymbol{v}|=k,|u|=l \text { and } v y_{1} u, v y_{2} u \neq \lambda .
$$

- 0,0 -substitutability $=$ substitutability by Clark and Eyraud (2007)


## $k, l$-Substitutable Languages

- $k, l$-substitutability: for any strings $x_{1}, z_{1}, x_{2}, z_{2}, y_{1}, y_{2}, v, u \in \Sigma^{*}$,

$$
x_{1} v y_{1} u z_{1}, x_{1} v y_{2} u z_{1}, x_{2} v y_{1} u z_{2} \in L \quad \Longrightarrow \quad x_{2} v y_{2} u z_{2} \in L
$$

$$
\text { if }|v|=k,|u|=l \text { and } v y_{1} u, v y_{2} u \neq \lambda .
$$

- 0, 0-substitutability $=$ substitutability by Clark and Eyraud (2007)
- $(k, l)-\mathcal{S U B} \subseteq(m, n)-\mathcal{S U B}$ iff $k \leq m$ and $l \leq n$.


## $k, l$-Substitutable Languages

- $k, l$-substitutability: for any strings $x_{1}, z_{1}, x_{2}, z_{2}, y_{1}, y_{2}, v, u \in \Sigma^{*}$,

$$
x_{1} v y_{1} u z_{1}, x_{1} v y_{2} u z_{1}, x_{2} v y_{1} u z_{2} \in L \quad \Longrightarrow \quad x_{2} v y_{2} u z_{2} \in L
$$

if $|\boldsymbol{v}|=k,|u|=l$ and $v y_{1} u, v y_{2} u \neq \lambda$.

- 0,0 -substitutability $=$ substitutability by Clark and Eyraud (2007)
- $(k, l)-\mathcal{S U B} \subseteq(m, n)-\mathcal{S U B}$ iff $k \leq m$ and $l \leq n$.
- $k$-reversible languages:

$$
x_{1} v y_{1}, x_{1} v y_{2}, x_{2} v y_{1} \in L \quad \Longrightarrow \quad x_{2} v y_{2} \in L
$$

if $|\boldsymbol{v}|=\boldsymbol{k}$.
3. Learning Algorithm for $k$, l-Substitutable Context-Free Languages

## Learning Target

- Our learning target is the class of languages that are
- $k, l$-substitutable and
- context-free for each $k, l$.
- Hereafter we fix nonnegative integers $k$ and $l$ with $\langle k, l\rangle \neq\langle 0,0\rangle$.


## Learning Algorithm $k, l$-SGL

let $\hat{G}$ be a CFG generating the empty language;
for $n=1,2, \ldots$ do
read the next string $w_{n}$;
if $w_{n} \notin \mathcal{L}(\hat{G})$
then for $K=\left\{w_{1}, \ldots, w_{n}\right\}$, let $\hat{G}=\left\langle\Sigma, V_{K}, P_{K}, S\right\rangle$ where

$$
\begin{aligned}
V_{K} & =\{[y] \mid x y z \in K, y \neq \lambda\} \cup\{S\} \\
P_{K} & =\{S \rightarrow[w] \mid w \in K\} \\
& \cup\left\{[x y] \rightarrow[x][y] \mid[x y],[x],[y] \in V_{K}\right\} \\
& \cup\{[a] \rightarrow a \mid a \in \Sigma\} \\
& \cup\left\{[v y u] \rightarrow\left[v y^{\prime} u\right] \mid \text { xvyuz, } x v y^{\prime} u z \in K,|v|=k,|u|=l\right\} ;
\end{aligned}
$$

end if
output $\hat{G}$;
end for

Let $k=l=1$ and $K=\{a b, a a b b\}$.

## Example Run

Let $k=l=1$ and $K=\{a b, a a b b\}$.
$V_{K}=\{S,[a],[b],[a a],[a b],[b b],[a a b],[a b b],[a a b b]\}$
$P_{K}=\{S \rightarrow[a b], S \rightarrow[a a b b]$,

$$
[a a b b] \rightarrow[a a b][b],[a a b b] \rightarrow[a a][b b],[a a b b] \rightarrow[a][a b b],
$$

$$
[a a b] \rightarrow[a a][b],[a a b] \rightarrow[a][a b],[a b b] \rightarrow[a b][b],[a b b] \rightarrow[a][b b],
$$

$$
[a a] \rightarrow[a][a],[a b] \rightarrow[a][b],[b b] \rightarrow[b][b],
$$

$$
[a] \rightarrow a,[b] \rightarrow b,
$$

$$
[a a b b] \rightarrow[a b],[a b] \rightarrow[a a b b]\}
$$

$$
S \Rightarrow[a a b b] \Rightarrow[a][a b b] \Rightarrow[a][a b][b] \Rightarrow[a][a a b b][b] \stackrel{*}{\Rightarrow} a a a b b b
$$

$$
L(\hat{G})=\left\{a^{n} b^{n} \mid n \geq 1\right\}
$$

## Convergence

$G_{*}$ : target grammar generating a $k, l$-SCFL
$\hat{G}_{K}$ : output on $K \subseteq L\left(G_{*}\right)$

- $L\left(\hat{G}_{K}\right) \subseteq L\left(G_{*}\right)$ always.


## Convergence

$G_{*}$ : target grammar generating a $k, l$-SCFL
$\hat{G}_{K}$ : output on $K \subseteq L\left(G_{*}\right)$

- $L\left(\hat{G}_{K}\right) \subseteq L\left(G_{*}\right)$ always.
- $L\left(\hat{G}_{K}\right)$ is not necessarily $k, l$-substitutable.
- Example: $k=1, l=0, K=\{a, a b, a b b c\}$

$$
a b b c \in L\left(G_{*}\right) \longrightarrow a b c \in L\left(G_{*}\right) \longrightarrow a c \in L\left(G_{*}\right)
$$

## Convergence

$G_{*}$ : target grammar generating a $k, l$-SCFL
$\hat{G}_{K}$ : output on $K \subseteq L\left(G_{*}\right)$

- $L\left(\hat{G}_{K}\right) \subseteq L\left(G_{*}\right)$ always.
- $L\left(\hat{G}_{K}\right)$ is not necessarily $k, l$-substitutable.
- Example: $k=1, l=0, K=\{a, a b, a b b c\}$

$$
\begin{gathered}
a b b c \in L\left(G_{*}\right) \longrightarrow a b c \in L\left(G_{*}\right) \longrightarrow a c \in L\left(G_{*}\right) \\
S \underset{\hat{\vec{G}}_{K}}{\Rightarrow}[a b b c] \Rightarrow[a b][b c] \Rightarrow[a][b c] \nRightarrow[a b][c] \Rightarrow[a][c]
\end{gathered}
$$

## Convergence

$G_{*}$ : target grammar generating a $k, l$-SCFL
$\hat{G}_{K}$ : output on $K \subseteq L\left(G_{*}\right)$

- $L\left(\hat{G}_{K}\right) \subseteq L\left(G_{*}\right)$ always.
- $L\left(\hat{G}_{K}\right)$ is not necessarily $k, l$-substitutable.
- Example: $k=1, l=0, K=\{a, a b, a b b c\}$

$$
\begin{gathered}
a b b c \in L\left(G_{*}\right) \longrightarrow a b c \in L\left(G_{*}\right) \longrightarrow a c \in L\left(G_{*}\right) \\
S \underset{\hat{\vec{G}}_{K}}{\Rightarrow}[a b b c] \Rightarrow[a b][b c] \Rightarrow[a][b c] \nRightarrow[a b][c] \Rightarrow[a][c]
\end{gathered}
$$

- We will present a characteristic set $\boldsymbol{K}_{G_{*}}$ of a $k, l$-SCFL $L\left(G_{*}\right)$ :

$$
K_{G_{*}} \subseteq K \quad \Longrightarrow \quad L\left(G_{*}\right) \subseteq L\left(\hat{G}_{K}\right)
$$

## $k, l$-Greibach Normal Form

- $G=\langle\boldsymbol{\Sigma}, \boldsymbol{V}, \boldsymbol{P}, S\rangle$ is in $k, l$-GNF if every rule has the form either
- $A \rightarrow \boldsymbol{w}$ with $\boldsymbol{w} \in \Sigma^{\leq k+l}-\{\lambda\}$ or
- $A \rightarrow x \beta z$ with $x \in \Sigma^{k}, z \in \Sigma^{l}, \beta \in V^{+}$.
- $1,0-G N F=$ Standard Greibach normal form
- 1,1-GNF = Double Greibach normal form


## Theorem:

Every CFG has an equivalent CFG in $k, l-\mathrm{GNF} G=\langle\boldsymbol{\Sigma}, \boldsymbol{V}, \boldsymbol{P}, \boldsymbol{S}\rangle$ of polynomial size with $P \subseteq V \times\left(\Sigma^{\leq k+l} \cup \Sigma^{k} V \leq^{\leq} \Sigma^{l}\right)$.

## $k, l$-Greibach Normal Form

- $G=\langle\boldsymbol{\Sigma}, \boldsymbol{V}, \boldsymbol{P}, S\rangle$ is in $k, l$-GNF if every rule has the form either
- $A \rightarrow \boldsymbol{w}$ with $\boldsymbol{w} \in \Sigma^{\leq k+l}-\{\lambda\}$ or
- $A \rightarrow x \beta z$ with $x \in \Sigma^{k}, z \in \Sigma^{l}, \beta \in V^{+}$.
- $1,0-G N F=$ Standard Greibach normal form
- 1,1-GNF = Double Greibach normal form


## Theorem:

Every CFG has an equivalent CFG in $k, l-\mathrm{GNF} G=\langle\boldsymbol{\Sigma}, \boldsymbol{V}, \boldsymbol{P}, \boldsymbol{S}\rangle$ of polynomial size with $P \subseteq V \times\left(\Sigma^{\leq k+l} \cup \Sigma^{k} V \leq^{\leq} \Sigma^{l}\right)$.
$\longrightarrow$ Learning target is in $k, l$-GNF.

## Characteristic Set (1)

Let $G=\langle\Sigma, V, P, S\rangle$ be in $k, l-G N F$.
For each rule $A \rightarrow y$ with $y \in \Sigma^{*}$,


## Characteristic Set (1)

Let $G=\langle\boldsymbol{\Sigma}, \boldsymbol{V}, \boldsymbol{P}, \boldsymbol{S}\rangle$ be in $k, l$-GNF.
For each rule $A \rightarrow y$ with $y \in \Sigma^{*}$,

$x_{A} y z_{A} \in K_{G}$, where $x_{A}, z_{A} \in \Sigma^{*}$ are shortest.

## Characteristic Set (2)

Let $G=\langle\Sigma, V, P, S\rangle$ be in $k, l$-GNF.
For each tuple of rules $A \rightarrow v B_{1} \ldots B_{n} u$ and $B_{i} \rightarrow \beta_{i}$ for $i=1 \ldots n$ which forms a tree of height 2,


## Characteristic Set (2)

Let $G=\langle\Sigma, V, P, S\rangle$ be in $k, l$-GNF.
For each tuple of rules $A \rightarrow v B_{1} \ldots B_{n} u$ and $B_{i} \rightarrow \beta_{i}$ for $i=1 \ldots n$ which forms a tree of height 2,

$x_{A} v w_{1} \ldots w_{n} u z_{A} \in K_{G}$, where $x_{A}, z_{A}, w_{1}, \ldots, w_{n} \in \Sigma^{*}$ are shortest.

## Characteristic Set (2)

Let $G=\langle\Sigma, V, P, S\rangle$ be in $k, l$-GNF.
For each tuple of rules $A \rightarrow v B_{1} \ldots B_{n} u$ and $B_{i} \rightarrow \beta_{i}$ for $i=1 \ldots n$ which forms a tree of height 2,

$x_{A} v w_{1} \ldots w_{n} u z_{A} \in K_{G}$, where $x_{A}, z_{A}, w_{1}, \ldots, w_{n} \in \Sigma^{*}$ are shortest.

- $\left|K_{G}\right| \leq|P|^{n+1}$ where $n=\max \{|\beta| \mid A \rightarrow v \beta u \in P\} \leq 2$,


## Example

$$
\begin{aligned}
& k=l=1 \\
& G: S \rightarrow a S c, S \rightarrow b \\
& L(G)=\left\{a^{n} b c^{n} \mid n \geq 0\right\}
\end{aligned}
$$

## Example

$$
k=l=1 .
$$

$$
G: S \rightarrow a S c, S \rightarrow b
$$

$$
L(G)=\left\{a^{n} b c^{n} \mid n \geq 0\right\}
$$



## Example

$k=l=1$.

$$
\begin{aligned}
& G: S \rightarrow a S c, S \rightarrow b \\
& L(G)=\left\{a^{n} b c^{n} \mid n \geq 0\right\}
\end{aligned}
$$


$K_{G}=\{b, a b c, a a b c c\}$

$$
S \underset{\hat{G}_{K_{G}}}{\Rightarrow}[a b c] \Rightarrow[a a b c c] \stackrel{*}{\Rightarrow}[a][a b c][c] \Rightarrow[a][a a b c c][c] \stackrel{*}{\Rightarrow} \cdots
$$

$a a b c c \in K_{G}$ is necessary, as $\{b, a b c\}$ is a $1,1-$ SCFL too.

## Proof

$$
\begin{aligned}
K_{A} & =\left\{y \in \Sigma^{*} \mid A \rightarrow y \in P\right\} \\
& \cup\left\{v \widetilde{\beta}_{1} \ldots \widetilde{\beta}_{n} u \in \Sigma^{*} \mid A \rightarrow v B_{1} \ldots B_{n} u, B_{i} \rightarrow \beta_{i} \in P\right\} \\
& \text { where } \widetilde{\alpha}=\min \left\{w \in \Sigma^{*} \mid \alpha \underset{G}{*} w\right\} \text { for } \alpha \in(\Sigma \cup V)^{*}, \\
\left(K_{G}\right. & \left.=\bigcup_{A \in V} x_{A} K_{A} z_{A}\right) .
\end{aligned}
$$

Lemma.
Let $\mathcal{A}\left(K_{G}\right)=\hat{G} . \forall A \rightarrow v B_{1} \ldots B_{n} u \in P, \forall w_{i} \in K_{B_{i}}, \exists w \in K_{A}$ :

$$
[w] \underset{\vec{G}}{\stackrel{*}{\Rightarrow}} v\left[w_{1}\right] \ldots\left[w_{n}\right] u .
$$

## Proof

## Lemma.

Let $\mathcal{A}\left(K_{G}\right)=\hat{G} . \forall A \rightarrow v B_{1} \ldots B_{n} u \in P, \forall w_{i} \in K_{B_{i}}, \exists w \in K_{A}$ :

$$
[w] \underset{\underset{G}{*}}{\underset{G}{*}} v\left[w_{1}\right] \ldots\left[w_{n}\right] u .
$$

Proof. Let $\boldsymbol{\beta}_{\boldsymbol{i}}$ be such that $\boldsymbol{B}_{\boldsymbol{i}} \Rightarrow_{\boldsymbol{G}} \boldsymbol{\beta}_{\boldsymbol{i}} \stackrel{*}{\Rightarrow} \boldsymbol{w}_{\boldsymbol{i}} . \boldsymbol{v} \widetilde{\boldsymbol{\beta}}_{1} \ldots \widetilde{\boldsymbol{\beta}}_{n} \boldsymbol{u} \in \boldsymbol{K}_{\boldsymbol{A}}$. Let

$$
J=\left\{i \mid w_{i} \neq \widetilde{\beta}_{i}\right\}
$$

For each $i \in J$, we have $\widetilde{\boldsymbol{\beta}}_{\boldsymbol{i}}=\boldsymbol{v}_{\boldsymbol{i}} \boldsymbol{y}_{i}^{\prime} u_{i}$ and $\boldsymbol{w}_{\boldsymbol{i}}=\boldsymbol{v}_{\boldsymbol{i}} \boldsymbol{y}_{i} \boldsymbol{u}_{\boldsymbol{i}}$ for some $v_{i} \in \Sigma^{k}$, $u_{i} \in \Sigma^{l}$ and $y_{i}, y_{i}^{\prime} \in \Sigma^{*}$. Then $x_{i} v_{i} y_{i}^{\prime} u_{i} z_{i}, x_{i} v_{i} y_{i} u_{i} z_{i} \in K_{G}$ for minimal $x_{i}, z_{i}$ such that $S \Rightarrow_{G}^{*} x_{i} B_{i} z_{i}$. $\left[v_{i} y_{i}^{\prime} u_{i}\right] \rightarrow\left[v_{i} y_{i} u_{i}\right] \in P_{K}$. Thus

$$
\begin{equation*}
\left[v \widetilde{\boldsymbol{\beta}}_{1} \ldots \widetilde{\boldsymbol{\beta}}_{n} u\right] \underset{\hat{G}}{\stackrel{*}{\Rightarrow}} v\left[\widetilde{\boldsymbol{\beta}}_{1}\right] \ldots\left[\widetilde{\boldsymbol{\beta}}_{n}\right] u \stackrel{*}{\Rightarrow} v\left[w_{1}\right] \ldots\left[w_{n}\right] u \tag{QED.}
\end{equation*}
$$

## Polynomial Identifiability of $k, l$-SCFLs

## Proposition:

For any CFG $G_{*}$ generating a $k, l$-substitutable languages, and any input $\boldsymbol{K}$ such that $\boldsymbol{K}_{\boldsymbol{G}_{*}} \subseteq \boldsymbol{K}$, we have $L\left(\hat{G}_{K}\right)=L\left(\boldsymbol{G}_{*}\right)$ for $\hat{\boldsymbol{G}}_{\boldsymbol{K}}$ the output by the algorithm on $\boldsymbol{K}$.

## Polynomial Identifiability of $k, l$-SCFLs

## Proposition:

For any CFG $G_{*}$ generating a $k, l$-substitutable languages, and any input $\boldsymbol{K}$ such that $\boldsymbol{K}_{\boldsymbol{G}_{*}} \subseteq \boldsymbol{K}$, we have $L\left(\hat{G}_{K}\right)=L\left(G_{*}\right)$ for $\hat{G}_{K}$ the output by the algorithm on $\boldsymbol{K}$.

- Computation of $\hat{\boldsymbol{G}}_{\boldsymbol{K}}$ : Poly-time in $\|\boldsymbol{K}\|=\sum_{\boldsymbol{w} \in \boldsymbol{K}}|\boldsymbol{w}|$,
- $\left|\boldsymbol{K}_{\boldsymbol{G}_{*}}\right| \leq|\boldsymbol{P}|^{3}$,


## 4. Summary and Future Work

## Summary and Future Work

Summary

- $k, l$-substitutable CFLs $\Longleftrightarrow \boldsymbol{k}$-reversible regular languages
- Identifiable in the limit from positive data with polynomial-time and data


## Summary and Future Work

## Summary

- $k, l$-substitutable CFLs $\Longleftrightarrow \boldsymbol{k}$-reversible regular languages
- Identifiable in the limit from positive data with polynomial-time and data

Future Work

- Grammatical characterization of $k, l$-SCFLs ( $k, l$-GNF ?)
- Results on $\boldsymbol{k}$-reversible regular languages
$\Longrightarrow$ Analogous results on $k, l$-SCFLs
- $k$-reversible closure of a finite language is always regular, but $k, l$-substitutable closure of a finite language can be non-context-free.


## Thank You

Polynomial Identification of $k, l$-SCFLs - p.24/24

