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Grammati
al Inferen
efrom Positive Examples

Available Information� a set of positive examples� the target 
lass

First possible strategy : learning by generalization� build a least general grammar generating the examples� apply a generalization operator until it belongs to the target 
lass

Se
ond possible strategy : learning by spe
ialization� the initial hypothesis spa
e is the whole target 
lass� use the examples to 
onstrain this spa
e until it is redu
ed to onegrammar
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Overview of known results


lass of languages regular languages CF languagesis a sub
lass ofrepresentation �nite state automata Categorial Grammarsgeneralization state fusion uni�
ation of 
ategoriesstrategy (Angluin 81) (Kanazawa 96, 98)spe
ialization state �ssion 
onstraints introdu
tionstrategy (Fredouille 00) (Moreau 04)The links between them : this paper !
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Categorial Grammars and Re
ursive Automata

De�nition of a AB-Categorial Grammar� let Σ be a �nite vo
abulary� let B be an enumerable set of basi
 
ategories, among whi
h isthe axiom S ∈ B� the set of 
ategories Cat(B) is the smallest set su
h that :� B ⊂ Cat(B)� ∀A, B ∈ Cat(B) : A/B ∈ Cat(B) and B\A ∈ Cat(B)� a Categorial Grammar G is a �nite relation over Σ × Cat(B)� Synta
ti
 rules are expressed by two s
hemes : ∀A, B ∈ Cat(B)� Forward Appli
ation FA : A/B B −→ A� Ba
kward Appli
ation BA : B B\A −→ A� L(G) : set of strings 
orresponding to a sequen
e of 
ategorieswhi
h redu
es to S



Categorial Grammars and Re
ursive Automata

De�nition of a AB-Categorial Grammar� Let B = {S, T, CN} where T stands for �term� and CN for�
ommon noun�� Σ = {John, runs, a, man, fast}� G = {〈John, T 〉, 〈runs, T\S〉, 〈a, (S/(T\S))/CN〉, 〈man, CN〉

〈fast, (T\S)\(T\S)〉}

S

BA

TJohn T\Sruns

S

FA

S/(T\S)

FA

(S/(T\S))/CNa CNman
T\S

BA

T\Sruns (T\S)\(T\S)fast



Categorial Grammars and Re
ursive Automata

De�nition of Re
ursive Automata (Tellier06)� A RA is like a Finite State Automaton ex
ept that transitions 
anbe labelled by a state� Using a transition labelled by a state Q means produ
ing w ∈ L(Q)� There are two distin
t kinds of RA :� the RAFA-kind where the language L(Q) of a state Q is theset of strings from Q to the �nal state� Every unidire
t. FA CG is strongly equivalent with a RAFA� the RABA-kind where the language L(Q) of a state Q is theset of strings from the initial state to Q� Every unidire
t. BA CG is strongly equivalent with a RABA� Every CG is equivalent with a pair MRA = 〈RAFA, RAFA〉



T

S T\S F (T\S)\(T\S)

S/(T\S) CN

S/(T\S)

JohnT
T\Sruns (T\S)\(T\S)fasta

(S/(T\S))/CN

man CN
CN (T\S)\(T\S)

I T S

(S/(T\S))/CN T\S

manCN
T
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T\S

runsruns T\Sa(S/(T\S)/CN

fast (T\S)\(T\S)

(T\S)\(T\S)
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Learning by spe
ialization

Inferen
e of rigid CGs from strings (Moreau 04)� Target Class : rigid Categorial Grammars, i.e. at most one
ategory for ea
h word� Input : a set of senten
es� Learning Algorithm :1. asso
iate a distin
t unique variable with ea
h word2. for ea
h senten
e do� try to parse the senten
e (CYK-like algorithm)� indu
e 
onstraints on the variables� Output : (disjun
tions of) set(s) of 
onstraints, ea
h set
orresponding with a (set of) rigid grammar(s)



Learning by spe
ialization

Inferen
e of rigid CGs from strings (Moreau 04) : example� input data : The set D = {John runs, a man runs fast}� asso
iate a distin
t unique variable with ea
h word :

A = {〈John, x1〉, 〈runs, x2〉, 〈a, x3〉, 〈man, x4〉, 〈fast, x5〉}� for every unidire
tional CG G, there exists a substitutiontransforming A into G� A spe
i�es the set of every unidire
tional CGs� A 
an also be represented by a MRA = 〈RAFA, RABA〉 :

x1 x2

F

x3 x5

x4

John runsaman fast x1 x2

I

x3 x5

x4

John runsaman fast



Learning by spe
ialization

Inferen
e of rigid CGs from strings (Moreau 04) : example� the only two possible ways to parse �John runs� :

S

FA

x1 = S/x2John x2runs
S

BA

x1John x2 = x1\Sruns� to parse �a man runs fast� :� theoreti
ally : 5 ∗ 23 = 40 distin
t possible ways� but some 
ouples of 
onstraints are not 
ompatible with the
lass of rigid grammars� main problem with this algo : 
ombinatorial explosion� to limit it : initial knowledge in the form of known assignments



Learning by spe
ialization

E�e
ts of 
onstraints on a MRA = 〈RAFA, RABA〉� 
onstraints inferred are of the form :� xk = xl with xk and xl already exist : state and/or transitionmerges in both the RAFA and the RABA� or xk = Xm/Xn (resp. xk = Xm\Xn) with Xm, Xn ∈ Cat(B)� the e�e
t of xk = Xm/Xn (resp. xk = Xm\Xn) in a MRA :� Xm/Xn (resp. xk = Xm\Xn) repla
es xk everywhere in the MRA� every sub
ategory of Xm and Xn (in
luding themselves)be
omes a new state in both the RAFA and the RABA, linked to

F (resp. from I) by a its name� in the RAFA (resp. the RABA), a new transition labelled by

Xm/Xn (resp. Xm\Xn) links the states Xm and Xn� the states of the same name are merged� So : a 
ombination of state splits and state merges� better founded than the state splits in (Fredouille 00)



Outline1. Introdu
tion2. Categorial Grammars and Re
ursive Automata3. Learning by spe
ialization in both representations4. Learning from Typed Examples : a new interpretation5. Con
lusion



Learning From Typed Examples

Basi
 ideas (Dudau, Tellier &Tommasi 01)� 
ognitive hypothesis : lexi
al semanti
s is learned before syntax� formalization : words are given with their (Montague's) semanti
type� Types derive from 
ategories by a homomorphism� Classi
al example : h(T ) = e, h(S) = t, h(CN) = 〈e, t〉 and

h(A/B) = h(B\A) = 〈h(B), h(A)〉� input data : typed senten
es are of the formJohn runs

e 〈e, t〉

a man runs fast

〈〈e, t〉, 〈〈e, t〉, t〉〉 〈e, t〉 〈e, t〉 〈〈e, t〉, 〈e, t〉〉



Learning From Typed Examples

Target Class� The set of CGs su
h that every distin
t 
ategory assigned to thesame word gives a distin
t type� ∀〈v, C1〉, 〈v, C2〉 ∈ G, C1 6= C2 =⇒ h(C1) 6= h(C2)� Theorem (Dudau, Tellier & Tommasi 03) : for everyCF-language, there exists a grammar G generating it and amorphism h satisfying this 
ondition

General algorithm (Dudau, Tellier &Tommasi 01)1. initial set of assignments : introdu
e variables to represent the 
lass2. for ea
h senten
e� try to parse the senten
e (CYK-like)� indu
e 
onstraints on the variables3. Output : (disjun
tions) of set(s) of 
ontraint(s), ea
h beingrepresented by a least general grammar



Learning From Typed Examples

Example of pre-treatment� introdu
e a distin
t variable whose possible values are / or \ infront of every subtype� in our example, the result is of the form :John runs
e x1〈e, t〉a man runs fast

x2〈x3〈e, t〉, x4〈x5〈e, t〉, t〉〉 x6〈e, t〉 x1〈e, t〉 x7〈x8〈e, t〉, x9〈e, t〉〉



Learning From Typed Examples

Infering 
onstraints by parsing

t

FA : x1 = \

eJohn x1〈e, t〉runs
t

FA : x4 = /

x5 = x9

x4〈x5〈e, t〉, t〉

FA : x2 = /

x3 = x6

x2〈x3〈e, t〉, x4〈x5〈e, t〉, t〉〉a x6〈e, t〉man
x9〈e, t〉

BA : x7 = \

x8 = x1

x1〈e, t〉runs x7〈x8〈e, t〉, x9〈e, t〉〉fast



e\t e

t x5〈e, t〉 F (e\t)\x5〈e, t〉

t/x5〈e, t〉 x3〈e, t〉

t/(x5〈e, t〉)

Johne

x5〈e, t〉

e\t

runs

(e\t)\(x5〈e, t〉)fast

a(t/x5〈e, t〉)/x3〈e, t〉

man x3〈e, t〉

x3〈e, t〉 (e\t)\x5〈e, t〉

I e t

(t/(x5〈e, t〉))/x3〈e, t〉 e\t x5〈e, t〉

manx3〈e, t〉
e

John
e\t

runs

runse\ta(t/x5〈e, t〉)/x3〈e, t〉

fast (e\t)\(x5〈e, t〉)

(e\t)\x5〈e, t〉

fast



Learning From Typed Examples

Sum-up� mix of state splits and state merges� Types 
ontain in themselves where splits are possible� not every (
omplex) state 
an be merged : states are typed in thesense of (Coste & alii 2004)� the use of types redu
es the 
ombinatorial explosion of possiblesplits� types helph to 
onverge to the 
orre
t solution qui
ker



Learning From Typed Examples

Sum-up
vo
abulary Moreau's initial target 
ategory pre-treated typeassigmenta x1 (S/(T\S))/CN x2〈x3〈e, t〉, x4〈x5〈e, t〉, t〉〉man x2 CN x6〈e, t〉runs x3 T\S x1〈e, t〉� there exists a substitution, thus a homomorphism betweenMoreau's assignments and 
ategories� there exists a homomorphism between 
ategories and types(Prin
iple of 
ompositionality)� the starting point is either a lower bound or an upper bound� the �good substitution� is well 
onstrained by types
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Con
lusion

Main 
ontributions� we mainly propose a new perspe
tive on already known algorithms� the 
orrespondan
e between Categorial Grammars and re
ursiveautomata is fruitful� MRA 
an represent sets of grammars 
orresponding to sear
hspa
es� spe
ialization strategies require additional knowledge (likesemanti
 types)� natural language is probably learnt by spe
ialization by 
hildren� spe
ialization te
hniques deserve further investigation (better forin
rementality...)
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