How to split Recursive Automata

Isabelle Tellier

Inria-Lille et LIFO Université d'Orléans

Available Information

- a set of positive examples
- the target class

First possible strategy: learning by generalization

- build a least general grammar generating the examples
- apply a generalization operator until it belongs to the target class

Second possible strategy: learning by specialization

- the initial hypothesis space is the whole target class
- use the examples to constrain this space until it is reduced to one grammar

Overview of known results

class of languages	regular languages	CF languages
is a subclass of		
representation	finite state automata	Categorial Grammars

Overview of known results

class of language	regular languages	CF languages
is a subclass of		
representation	finite state automata	Categorial Grammars
generalization	state fusion	unification of categories
strategy	(Angluin 81)	(Kanazawa 96, 98)

The links between them: in (Tellier 05, 06)

Overview of known results

class of languages	regular languages	CF languages	
is a subclass of	is a subclass of		
representation	finite state automata	Categorial Grammars	
generalization	state fusion	unification of categories	
strategy	(Angluin 81)	(Kanazawa 96, 98)	
specialization	state fission	constraints introduction	
strategy	(Fredouille 00)	(Moreau 04)	

Overview of known results

class of languages	regular languages	CF languages
is a subclass of	is a subclass of	
representation	finite state automata	Categorial Grammars
generalization	state fusion	unification of categories
strategy	(Angluin 81)	(Kanazawa 96, 98)
specialization	state fission	constraints introduction
strategy	(Fredouille 00)	(Moreau 04)

The links between them: this paper!

Outline

- 1. Introduction
- 2. Categorial Grammars and Recursive Automata
- 3. Learning by specialization in both representations
- 4. Learning from Typed Examples: a new interpretation
- 5. Conclusion

Categorial Grammars and Recursive Automata

Definition of a AB-Categorial Grammar

- let Σ be a finite vocabulary
- let $\mathcal B$ be an enumerable set of basic categories, among which is the axiom $S \in \mathcal B$
- the set of categories $Cat(\mathcal{B})$ is the smallest set such that :
 - $-\mathcal{B}\subset Cat(\mathcal{B})$
 - $\forall A, B \in Cat(\mathcal{B}) : A/B \in Cat(\mathcal{B}) \text{ and } B \setminus A \in Cat(\mathcal{B})$
- a Categorial Grammar G is a finite relation over $\Sigma \times Cat(\mathcal{B})$
- Syntactic rules are expressed by two schemes : $\forall A, B \in Cat(\mathcal{B})$
 - Forward Application $FA: A/B \ B \longrightarrow A$
 - Backward Application $BA: B B \setminus A \longrightarrow A$
- $-\ L(G)$: set of strings corresponding to a sequence of categories which reduces to S

Categorial Grammars and Recursive Automata

Definition of a AB-Categorial Grammar

- Let $\mathcal{B} = \{S, T, CN\}$ where T stands for "term" and CN for "common noun"
- $-\Sigma = \{John, runs, a, man, fast\}$
- $-G = \{\langle \mathsf{John}, T \rangle, \langle \mathsf{runs}, T \backslash S \rangle, \langle \mathsf{a}, (S/(T \backslash S))/CN \rangle, \langle \mathsf{man}, CN \rangle \\ \langle \mathsf{fast}, (T \backslash S) \backslash (T \backslash S) \rangle \}$

Categorial Grammars and Recursive Automata

Definition of Recursive Automata (Tellier06)

- A RA is like a Finite State Automaton except that transitions can be labelled by a state
- Using a transition labelled by a state Q means producing $w \in L(Q)$
- There are two distinct kinds of RA:
 - the RA_{FA} -kind where the language L(Q) of a state Q is the set of strings from Q to the final state
 - Every unidirect. FA CG is strongly equivalent with a RA_{FA}
 - the RA_{BA} -kind where the language L(Q) of a state Q is the set of strings from the initial state to Q
 - Every unidirect. BA CG is strongly equivalent with a RA_{BA}
- Every CG is equivalent with a pair $MRA = \langle RA_{FA}, RA_{FA} \rangle$

Outline

- 1. Introduction
- 2. Categorial Grammars and Recursive Automata
- 3. Learning by specialization in both representations
- 4. Learning from Typed Examples: a new interpretation
- 5. Conclusion

Inference of rigid CGs from strings (Moreau 04)

- Target Class: rigid Categorial Grammars, i.e. at most one category for each word
- Input: a set of sentences
- Learning Algorithm :
 - 1. associate a distinct unique variable with each word
 - 2. for each sentence do
 - try to parse the sentence (CYK-like algorithm)
 - induce constraints on the variables
- Output: (disjunctions of) set(s) of constraints, each set
 corresponding with a (set of) rigid grammar(s)

Inference of rigid CGs from strings (Moreau 04): example

- input data : The set $D = \{John runs, a man runs fast\}$
- associate a distinct unique variable with each word : $\mathcal{A} = \{ \langle \mathsf{John}, \ x_1 \rangle, \ \langle \mathsf{runs}, \ x_2 \rangle, \ \langle \mathsf{a}, \ x_3 \rangle, \ \langle \mathsf{man}, \ x_4 \rangle, \ \langle \mathsf{fast}, \ x_5 \rangle \}$
- for every unidirectional CG G, there exists a substitution transforming ${\mathcal A}$ into G
- \mathcal{A} specifies the set of every unidirectional CGs
- \mathcal{A} can also be represented by a $MRA = \langle RA_{FA}, RA_{BA} \rangle$:

Inference of rigid CGs from strings (Moreau 04): example

— the only two possible ways to parse "John runs" :

- to parse "a man runs fast" :
 - theoretically : $5 * 2^3 = 40$ distinct possible ways
 - but some couples of constraints are not compatible with the class of rigid grammars
- main problem with this algo: combinatorial explosion
- to limit it: initial knowledge in the form of known assignments

Effects of constraints on a $MRA = \langle RA_{FA}, RA_{BA} \rangle$

- constraints inferred are of the form :
 - $x_k=x_l$ with x_k and x_l already exist : state and/or transition merges in both the RA_{FA} and the RA_{BA}
 - or $x_k = X_m/X_n$ (resp. $x_k = X_m \setminus X_n$) with $X_m, X_n \in Cat(\mathcal{B})$
- the effect of $x_k = X_m/X_n$ (resp. $x_k = X_m \setminus X_n$) in a MRA :
 - $-X_m/X_n$ (resp. $x_k=X_m\backslash X_n$) replaces x_k everywhere in the MRA
 - every subcategory of X_m and X_n (including themselves) becomes a new state in both the RA_{FA} and the RA_{BA} , linked to F (resp. from I) by a its name
 - in the RA_{FA} (resp. the RA_{BA}), a new transition labelled by X_m/X_n (resp. $X_m\backslash X_n$) links the states X_m and X_n
 - the states of the same name are merged
- So: a combination of state splits and state merges
- better founded than the state splits in (Fredouille 00)

Outline

- 1. Introduction
- 2. Categorial Grammars and Recursive Automata
- 3. Learning by specialization in both representations
- 4. Learning from Typed Examples: a new interpretation
- 5. Conclusion

Basic ideas (Dudau, Tellier & Tommasi 01)

- cognitive hypothesis : lexical semantics is learned before syntax
- formalization : words are given with their (Montague's) semantic type
- Types derive from categories by a homomorphism
- Classical example : $h(T)=e,\ h(S)=t,\ h(CN)=\langle e,t\rangle$ and $h(A/B)=h(B\backslash A)=\langle h(B),h(A)\rangle$
- input data : typed sentences are of the form

John	runs	а	man	runs	fast
e	$\langle e,t angle$	$\langle\langle e, t \rangle, \langle\langle e, t \rangle, t \rangle\rangle$	$\langle e,t \rangle$	$\langle e,t \rangle$	$\langle\langle e,t \rangle, \langle e,t \rangle \rangle$

Target Class

- The set of CGs such that every distinct category assigned to the same word gives a distinct type
- $\forall \langle v, C_1 \rangle, \langle v, C_2 \rangle \in G, C_1 \neq C_2 \Longrightarrow h(C_1) \neq h(C_2)$
- Theorem (Dudau, Tellier & Tommasi 03): for every
 CF-language, there exists a grammar G generating it and a morphism h satisfying this condition

General algorithm (Dudau, Tellier & Tommasi 01)

- 1. initial set of assignments: introduce variables to represent the class
- 2. for each sentence
 - try to parse the sentence (CYK-like)
 - induce constraints on the variables
- 3. Output: (disjunctions) of set(s) of contraint(s), each being represented by a least general grammar

Example of pre-treatment

- introduce a distinct variable whose possible values are / or \backslash in front of every subtype
- in our example, the result is of the form :

John runs
$$e x_1 \langle e, t \rangle$$

а	man	runs	fast
$x_2\langle x_3\langle e,t\rangle, x_4\langle x_5\langle e,t\rangle,t\rangle\rangle$	$x_6\langle e,t\rangle$	$x_1\langle e,t\rangle$	$x_7\langle x_8\langle e,t\rangle, x_9\langle e,t\rangle\rangle$

Infering constraints by parsing

Sum-up

- mix of state splits and state merges
- Types contain in themselves where splits are possible
- not every (complex) state can be merged: states are typed in the sense of (Coste & alii 2004)
- the use of types reduces the combinatorial explosion of possible splits
- types helph to converge to the correct solution quicker

Sum-up

vocabulary	Moreau's initial	target category	pre-treated type
	assigment		
а	x_1	$(S/(T\backslash S))/CN$	$x_2\langle x_3\langle e,t\rangle, x_4\langle x_5\langle e,t\rangle,t\rangle\rangle$
man	x_2	CN	$x_6\langle e, t \rangle$
runs	x_3	$T \backslash S$	$x_1\langle e,t\rangle$

- there exists a substitution, thus a homomorphism between
 Moreau's assignments and categories
- there exists a homomorphism between categories and types
 (Principle of compositionality)
- the starting point is either a lower bound or an upper bound
- the "good substitution" is well constrained by types

Outline

- 1. Introduction
- 2. Categorial Grammars and Recursive Automata
- 3. Learning by specialization in both representations
- 4. Learning from Typed Examples: a new interpretation
- 5. Conclusion

Conclusion

Main contributions

- we mainly propose a new perspective on already known algorithms
- the correspondence between Categorial Grammars and recursive automata is fruitful
- MRA can represent sets of grammars corresponding to search spaces
- specialization strategies require additional knowledge (like semantic types)
- natural language is probably learnt by specialization by children
- specialization techniques deserve further investigation (better for incrementality...)