How to split Recursive Automata

Isabelle Tellier

Inria-Lille et LIFO
Universite d’'Orleans

Grammatical Inference
from Positive Examples

Available Information

— a set of positive examples

— the target class

First possible strategy : learning by generalization

— build a least general grammar generating the examples

— apply a generalization operator until it belongs to the target class

Second possible strategy : learning by specialization

— the initial hypothesis space is the whole target class

— use the examples to constrain this space until it is reduced to one

grammar

Grammatical Inference
from Positive Examples

Overview of known results

class of languages regular languages CF languages

IS a subclass of

representation finite state automata | Categorial Grammars

Grammatical Inference
from Positive Examples

Overview of known results

class of language regular languages CF languages

IS a subclass of

representation finite state automata Categorial Grammars

generalization state fusion unification of categories

strategy (Angluin 81) (Kanazawa 96, 98)

The links between them : in (Tellier 05, 06)

Grammatical Inference
from Positive Examples

Overview of known results

class of languages regular languages CF languages

IS a subclass of

representation finite state automata Categorial Grammars

generalization state fusion unification of categories
strategy (Angluin 81) (Kanazawa 96, 98)

specialization state fission constraints introduction

strategy (Fredouille 00) (Moreau 04)

Grammatical Inference
from Positive Examples

Overview of known results

class of languages regular languages CF languages
IS @ subclass of
representation finite state automata Categorial Grammars
generalization state fusion unification of categories
strategy (Angluin 81) (Kanazawa 96, 98)
specialization state fission constraints introduction
strategy (Fredouille 00) (Moreau 04)

The links between them : this paper!!

Outline

o & W N

. Introduction

Categorial Grammars and Recursive Automata

Learning by specialization in both representations

Learning from Typed Examples

Conclusion

. a new interpretation

Categorial Grammars and Recursive Automata

Definition of a AB-Categorial Grammar

— let > be a finite vocabulary

— let B be an enumerable set of basic categories, among which is
the axiom S € BB

— the set of categories Cat(B) is the smallest set such that :

— B C Cat(B)

— VA, B € Cat(B) : A/B € Cat(B) and B\A € Cat(B)
— a Categorial Grammar G is a finite relation over > x Cat(B)
— Syntactic rules are expressed by two schemes : VA, B € Cat(B)

— Forward Application FA : A/B B— A
— Backward Application BA : B B\A — A

— L(G) : set of strings corresponding to a sequence of categories
which reduces to S

Categorial Grammars and Recursive Automata

Definition of a AB-Categorial Grammar

— Let B={S5,T,CN} where T stands for “term” and CN for

‘common noun”
— > = {John, runs, a, man, fast}
— G = {{John, T, (runs, T\S), (a, (S/(T\S))/CN), (man, CN)
(fast, (T\S)\(T\S5))}

S S
BA FA
T T\S S/(T\S) s
John runs FA BA
(S/(T\S))/CN CN T\S (T\S)\(T\S)

a man runs fast

Categorial Grammars and Recursive Automata

Definition of Recursive Automata (Tellier06)

— A RA is like a Finite State Automaton except that transitions can
be labelled by a state

— Using a transition labelled by a state Q means producing w € L(Q)
— There are two distinct kinds of RA :

— the RAps-Kind where the language L((Q) of a state (Q is the
set of strings from (@ to the final state

— Every unidirect. FA CG is strongly equivalent with a RApy

— the RApg4-kind where the language L(Q) of a state @ is the
set of strings from the initial state to @

— Every unidirect. BA CG is strongly equivalent with a RApzy
— Every CG is equivalent with a pair MRA = (RApy, RApy)

T?John
S/(T\S) T\S

(T\SI\(T\5)
runs @

(5/(T\S))/CN

(T\SHI\(T\S)

man John

(5/(T\S)/CN

(T\SI\(T\S)

Outline

o & W N

. Introduction

Categorial Grammars and Recursive Automata

Learning by specialization in both representations

Learning from Typed Examples

Conclusion

. a new interpretation

Learning by specialization

Inference of rigid CGs from strings (Moreau 04)

— Target Class : rigid Categorial Grammars, i.e. at most one
category for each word

— Input : a set of sentences

— Learning Algorithm :
1. associate a distinct unique variable with each word

2. for each sentence do
— try to parse the sentence (CYK-like algorithm)
— induce constraints on the variables

— Output : (disjunctions of) set(s) of constraints, each set
corresponding with a (set of) rigid grammar(s)

Learning by specialization

Inference of rigid CGs from strings (Moreau 04) : example

— input data : The set D = {John runs, a man runs fast}

— associate a distinct unique variable with each word :
A = {(John, xz1), (runs, o), (a, x3), (Man, x4), (fast, z5)}

— for every unidirectional CG G, there exists a substitution
transforming A into GG

— A specifies the set of every unidirectional CGs

— A can also be represented by a MRA = (RApy, RARy)

Learning by specialization

Inference of rigid CGs from strings (Moreau 04) : example

— the only two possible ways to parse “John runs”

/\ /\

x1 = S/xo Ty =x1\S
John runs John runs
— to parse “a man runs fast” :
— theoretically : 5 % 23 = 40 distinct possible ways

— but some couples of constraints are not compatible with the
class of rigid grammars

— main problem with this algo : combinatorial explosion

— to limit it : initial knowledge in the form of known assignments

Learning by specialization

Effects of constraints on a MRA = (RAp4, RAgp)

— constraints inferred are of the form :
— x,, = x; wWith z, and z; already exist : state and/or transition
merges in both the RAr4 and the RApy
— or xp = X/ Xn (resp. xp, = X\ Xy) with X, X, € Cat(B)
— the effect of x, = X,/ X, (resp. zp = X\ Xn) in @ MRA
— Xm /Xy (resp. xp = X\ X,) replaces x;, everywhere in the M RA
— every subcategory of X, and X, (including themselves)
becomes a new state in both the RAr4 and the RAgy, linked to
F' (resp. from) by a its name
— in the RApy (resp. the RAg4), a new transition labelled by
Xm /Xy (resp. X\ X,) links the states X, and X,
— the states of the same name are merged

— S0 : a combination of state splits and state merges

— better founded than the state splits in (Fredouille 00)

Outline

o & W N

. Introduction

Categorial Grammars and Recursive Automata

Learning by specialization in both representations

Learning from Typed Examples

Conclusion

. a new interpretation

Learning From Typed Examples

Basic ideas (Dudau, Tellier & Tommasi 01)

cognitive hypothesis : lexical semantics is learned before syntax

formalization : words are given with their (Montague’s) semantic
type

Types derive from categories by a homomorphism

Classical example : h(T) = e, h(S) =t, h(CN) = (e, t) and
h(A/B) = h(B\A) = (h(B), h(A))

input data : typed sentences are of the form

John runs a man runs fast

e (&) || ((&1),{(e, 1), 1)) (et) (e, t) ((e1),(e1))

Learning From Typed Examples

Target Class
— The set of CGs such that every distinct category assigned to the
same word gives a distinct type
— Y(v,C1), (v,C2) € G, C1 # C2 = h(C1) # h(C>)
— Theorem (Dudau, Tellier & Tommasi 03) : for every

CF-language, there exists a grammar G generating it and a
morphism h satisfying this condition

General algorithm (Dudau, Tellier & Tommasi 01)
1. initial set of assignments : introduce variables to represent the class
2. for each sentence
— try to parse the sentence (CYK-like)

— induce constraints on the variables

3. Output : (disjunctions) of set(s) of contraint(s), each being
represented by a least general grammar

Learning From Typed Examples

Example of pre-treatment

— introduce a distinct variable whose possible values are / or \ in
front of every subtype

— in our example, the result is of the form :

John runs

e x1{e,t)

a man runs fast

xo(x3{e, t), xza{xs(e,t),t)) xgle,t)y x1(e,t) x7{xgle,t),xzgle,t))

Learning From Typed Examples

Infering constraints by parsing

11’1—\

/\

xl e, t
John runs

t
FA 23342/
$5=339

VRN

r4({r5(e, 1)) zg(e, 1)
FA © xoy = BA x7 =\
1

N\

xo(x3(e,t), x4 (x5 (e, 1), 1)) zg(e,t) xq (e, t) xz7(xg (e, t), zge,t))
a man runs fast

Learning From Typed Examples

Sum-up

mix of state splits and state merges
Types contain in themselves where splits are possible

not every (complex) state can be merged : states are typed in the
sense of (Coste & alii 2004)

the use of types reduces the combinatorial explosion of possible
splits

types helph to converge to the correct solution quicker

Learning From Typed Examples

Sum-up
vocabulary | Moreau’s initial | target category pre-treated type
assigment
a 1 (S/(T\S))/CN | zo(x3(e,t), x4(z5(€s 1), 1))
man 5 CN re (e, t)
runs x3 T\S x1{e,t)

— there exists a substitution, thus a homomorphism between

Moreau's assignments and categories

— there exists a homomorphism between categories and types

(Principle of compositionality)

— the starting point is either a lower bound or an upper bound

— the “good substitution” is well constrained by types

Outline

o & W N

. Introduction

Categorial Grammars and Recursive Automata

Learning by specialization in both representations

Learning from Typed Examples

Conclusion

. a new interpretation

Conclusion

Main contributions

— we mainly propose a new perspective on already known algorithms

— the correspondance between Categorial Grammars and recursive
automata is fruitful

— MRA can represent sets of grammars corresponding to search
sSpaces

— specialization strategies require additional knowledge (like
semantic types)

— natural language is probably learnt by specialization by children

— specialization techniques deserve further investigation (better for
incrementality...)

	Grammatical Inferencefrom Positive Examples
	Grammatical Inferencefrom Positive Examples
	Grammatical Inferencefrom Positive Examples
	Grammatical Inferencefrom Positive Examples
	Grammatical Inferencefrom Positive Examples
	Outline
	Categorial Grammars and Recursive Automata
	Categorial Grammars and Recursive Automata
	Categorial Grammars and Recursive Automata
	Outline
	Learning by specialization
	Learning by specialization
	Learning by specialization
	Learning by specialization
	Outline
	Learning From Typed Examples
	Learning From Typed Examples
	Learning From Typed Examples
	Learning From Typed Examples
	Learning From Typed Examples
	Learning From Typed Examples
	Outline
	Conclusion

