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Motivations

Requirements Engineering (RE)
It has been claimed that the hardest part in building a software
system is deciding precisely what the system should do
One can automate parts of this RE process by learning behavior
models from scenarios
Scenarios are strings of possible events which can be generalized
to form a language of acceptable behaviors
Such languages are conveniently represented by finite-state
machines
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Scenarios
A train system example

Scenarios describe interactions between the software-to-be and
its environment
Scenarios are typical examples of system usage provided by an
end-user involved in the requirements elicitation process
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Synthesis of behavior models and DFA induction
A win-win situation

Regular languages are considered to be powerful enough
DFAs offer a convenient representation for model checking and
code generation
The typical size of such DFAs is about 20 . . . 100 states

I ⇒ hard to design exactly by a software analyst
I ⇒ not problematic for state-of-the-art DFA induction algorithm

(RPNI, BlueFringe)

Typical alphabet size ≈ 10 . . . 20
The end-user can really be used as an oracle in practice

(UCL Machine Learning Group) From MSM to ASM September 23, 2008 4.



State-merging induction with membership queries

Our previous work: the QSM algorithm [Damas et al. 05],
[Dupont et al. 08]

An extension to RPNI or BlueFringe (also known as redBlue) with
membership queries

The limited amount of positive and negative scenarios provided initially
by an end-user can be enriched by asking membership queries
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A high-level Message Sequence Chart
Flow-charting of various scenarios

This information defines Mandatory Merge Constraints between some
states of the prefix tree acceptor (PTA)
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State-merging DFA induction

Prefix-Tree Acceptor (PTA)
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State-merging DFA induction algorithm

Algorithm STATE-MERGING DFA INDUCTION ALGORITHM
Input: A positive and negative sample (S+, S−)

Output: A DFA A consistent with (S+, S−)

// Compute a PTA, let N denote the number of its states
PTA← Initialize(S+, S−); π ← {{0}, {1}, ..., {N − 1}}

// Main state-merging loop
while (Bi , Bj )← ChoosePair(π) do

πnew ← Merge(π, Bi , Bj )
if Compatible(PTA/πnew , S−) then

π ← πnew

return PTA/π
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The Merge function also reduces non-determinism
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Tree invariant

Tree invariant property
At least one of the 2 states implied in a merging operation is the
root of a (sub)-tree
True for RPNI, BlueFringe (= redBlue), etc
Simplification of the actual implementation
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Incompatibility constraints
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Augmented PTA with positively accepting states (= grey) and
negatively accepting states (= black)
The Merge function reduces non-determinism and checks such
coloring constraints

I States having different colors may not be merged
I States having the same color can be merged

Coloring constraints define incompatibility between states from
positive and negative information or additional domain knowledge
[Coste et al. 04], [Dupont et al. 08]
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Mandatory merge constraints
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Another kind of domain knowledge defines mandatory merge
constraints between states sharing the same labels
Labeling constraints are the logical counterpart to the coloring
constraints

I States with the same label must be merged
I States with different labels can be merged

A fully labeled PTA does not define a trivial induction problem
I Without coloring constraints (such as those provided by the

negative sample) all states will be merged
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MSM algorithm

Algorithm MSM
Input: A non-empty initial positive and negative sample (S+, S−)

Input: Labeling and coloring constraints
Output: A DFA A consistent with (S+, S−) and all constraints

// Compute a PTA, let N denote the number of its states
PTA← Initialize(S+, S−); π ← {{0}, {1}, ..., {N − 1}}

// Merge all states according to labeling constraints
while (Bi , Bj )← FindSameBlocks(π) do

π ← Merge(π, Bk , Bl )

// Main state-merging loop
while (Bi , Bj )← ChoosePair(π) do

try
π ← Merge(π, Bi , Bj )

catch avoid
// inconsistency between coloring and labeling constraints

return PTA/π

(UCL Machine Learning Group) From MSM to ASM September 23, 2008 13.



MSM does not satisfy the tree invariant property

MSM is a straightforward extension to standard state-merging
algorithms
However...

Labeling constraints can force to merge states such that the
resulting automaton has a general graph structure
The tree invariant property is no longer satisfied
Recursive merging to reduce non-determinism naturally stops
even for general graphs
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Experiments on synthetic data
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Requirements engineering case study
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Algorithm |lab| Accuracy
RPNI - 0.55
BlueFringe - 0.83
MSM 0 0.55

3 0.71
6 0.73
10 0.88
15 0.90
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DFA induction from a positive DFA and a negative
sample

Algorithm ASM
Input: A positive DFA A+ and a negative sample S−
Output: A DFA A consistent with (A+, S−)

// Augment the automaton A+ with states

// marked/added from S−

M ← Augment(A+, S−)

// Compute the natural order on M

π ← NatOrder(M)

// Main state-merging loop

π ← Generalize(π)

return M/π
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DFA induction from positive and negative DFAs

Algorithm ASM∗

Input: A positive DFA A+ and a negative DFA A− such that L(A+) ∩ L(A−) = ∅
Output: A DFA A consistent with (A+, A−)

// Augment the automaton A+ with states

// marked/added from S−

M ← Product(A+, A−)

// Compute the natural order on M

π ← NatOrder(M)

// Main state-merging loop

π ← Generalize(π)

return M/π
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Product DFA

A+ A− M
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Take home message

Mandatory merge constraints are introduced to model domain
knowledge, for instance, from a Requirements Engineering
perspective
Mandatory merge constraints form the logical counterpart to
incompatibility constraints
The MSM algorithm deals with both types of constraints
MSM is a straightforward extension to RPNI or BlueFringe but

I without satisfying the tree-invariant property
I using recursive merging extended to general graphs

MSM gives rise to ASM∗ to induce DFAs from prior positive and
negative DFAs

I interesting from a practical viewpoint
I may require a new theoretical framework
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Future work

MSM implementation with the BlueFringe search order (easy)

MSM as an extension to QSM for active learning with queries
(somewhat more challenging)

Other applicative contexts where mandatory merge constraints
are natural

Further analyze ASM∗
I theoretically: characteristic samples?
I practically: experimental protocol?
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