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Trees

F = F0 ∪ F1 ∪ · · · ∪ Fp: a ranked alphabet

Fm: function symbols of arity m.

T (F): all the trees constructed from F .

Example:

F = {f (·, ·), a} ; f (a, f (a, a)) ∈ T (F).

f

a f

a a
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Stochastic Tree Languages

Stochastic tree language: Probability distribution over T (F)
p : T (F)→ R

for any t ∈ T (F), 0 ≤ p(t) ≤ 1 and∑
t∈T (F) p(t) = 1.

Formal power tree series over T (F)

r : T (F)→ R.

Notation: R〈〈T (F)〉〉 (vector space).
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A Basic Problem in Probabilistic Grammatical Inference

The Problem

Data t1, . . . , tn ∈ T (F) independently drawn according to
a fixed unknown stochastic tree language p.

Goal Infer an estimate of p in some class of probabilistic
models.

Probabilistic models

Probabilistic tree automata

Linear representations of rational tree series
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Probabilistic Tree Automata

A distribution over T (F) according to a PA with one state

Aα : ∆α = {q α→ a, q
1−α→ f (q, q)}, τ(q) = 1, 0 ≤ α ≤ 1

pα(f (a, f (a, a))) = α3(1− α)2

Less simple than in the word case

pα is a stochastic language iff α ≥ 1/2.

Is it decidable whether a PA defines a stochastic language?

The average tree size: 1/(2α− 1). Unbounded if α = 1/2.

It is polynomially decidable whether a PA defines a stochastic
language with bounded average size.
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Linear Representations of Rational Tree Languages

A series r ∈ R〈〈T (F)〉〉 is rational iff there exists a triple (V , µ, λ):

V is a finite dimensional vector space over R,

µ maps any f ∈ Fp to a p-linear mapping µ(f ) ∈ L(V p; V ),

λ is a linear form V → R,

r(t) = λµ(t), where µ(f (t1, . . . , tp)) = µ(f )(µ(t1), . . . , µ(tp)).

Example

V = R and let e1 6= 0 a basis of R,

µ(a) = αe1, µ(f )(e1, e1) = (1− α)e1,

λ(e1) = 1.

λµ(f (a, f (a, a))) = α3(1− α)2
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Rational Stochastic Tree Languages

Stochastic languages

A rational stochastic tree language (RSTL) is a stochastic
language that has a linear representation.

Every stochastic language computed by a probabilistic
automaton is rational.

Some RSTL cannot be computed by a probabilistic
automaton.

It is undecidable whether a linear representation represents a
stochastic language.

A RSTL can be equivalently represented by a weighted tree
automaton, minimal in the number of states (vector space).
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Word Languages: The Notion of Residual Languages

Languages: L ⊆ Σ∗, u ∈ Σ∗

u−1L = {v ∈ Σ∗|uv ∈ L}

Series: r ∈ R〈〈T (F)〉〉, u ∈ Σ∗

u̇r(v) = r(uv)

Residual language is a key notion for inference because:

residual languages are intrinsic components

they are observable on samples

they yield canonical representations.
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Contexts

$: a zero arity function symbol not in F0.

A context is an element of T (F ∪ {$}) s.t. $ appears exactly once.

C (F): all contexts over F .

c[t]: the tree obtained by substituting $ by t.

Example:

c = f (a, $)

f

a $

c[f (a, a)] = f (a, f (a, a))

f

a f

a a
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An Algebraic Characterization of Rational Series

Contexts operate on tree series

Let c ∈ C (F). Define ċ : R〈〈T (F)〉〉 → R〈〈T (F)〉〉 by

ċr(t) = r(c[t]).

Example

c = f (a, $), t = f (a, a), ċr(t) = r(f (a,f (a, a))).

Let r ∈ T (F), consider Wr = [{ċr |c ∈ C (F)}] ⊆ R〈〈T (F)〉〉

the vector subspace of R〈〈T (F)〉〉 spanned by the series ċr .

Theorem: r is rational iff the dimension of Wr is finite.
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The Canonical Linear Representation of Rational Series

Wr = [{ċr |c ∈ C (F)}] ; W ∗
r dual space of Wr

No natural linear representation of r on Wr

T (F) is naturally embedded in W ∗
r :

t → t s.t. t(ċr) = r(c[t])

{t|t ∈ T (F)} spans W ∗
r

the canonical linear representation of r :
(W ∗

r , µ, λ) where µ(t) = t and λ = r (W ∗
r
∗ = Wr )

F. Denis, E. Gilbert, A. Habrard, F. Ouardi and M. Tommasi Representations for Rational Stochastic Tree Languages



The Basic Problem
A Canonical Linear Representation for Rational Tree Series

Contributions
Conclusion

The Canonical Linear Representation of Rational Series

Wr = [{ċr |c ∈ C (F)}] ; W ∗
r dual space of Wr

No natural linear representation of r on Wr

T (F) is naturally embedded in W ∗
r :

t → t s.t. t(ċr) = r(c[t])
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Building the Canonical Linear Representation

F = {f (, ), a}, τ(q) = 1, pα : q
α→ a, q

1−α→ f (q, q)
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Building the Canonical Linear Representation

F = {f (, ), a}, τ(q) = 1, pα : q
α→ a, q

1−α→ f (q, q)

Let p = 2p2/3 − p3/4 :
∑

t p(t) = 1 and ∀t, p(t) ≥ 0.
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Building the Canonical Linear Representation

Let p = 2p2/3 − p3/4 :
∑

t p(t) = 1 and ∀t, p(t) ≥ 0.

p(a) =
7

12
, p(f (a, a)) =

269

1728
, p(f (a, f (a, a))) = p(f (f (a, a), a)) =

9823

248832
, . . .
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Building the Canonical Linear Representation

Let p = 2p2/3 − p3/4 :
∑

t p(t) = 1 and ∀t, p(t) ≥ 0.

p(a) =
7

12
, p(f (a, a)) =

269

1728
, p(f (a, f (a, a))) = p(f (f (a, a), a)) =

9823

248832
, . . .

Oracle: Is a = 0? i.e. for every context c , p(c[a]) = 0?
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Building the Canonical Linear Representation

Let p = 2p2/3 − p3/4 :
∑

t p(t) = 1 and ∀t, p(t) ≥ 0.

p(a) =
7

12
, p(f (a, a)) =

269

1728
, p(f (a, f (a, a))) = p(f (f (a, a), a)) =

9823

248832
, . . .

Oracle: Is a = 0? i.e. for every context c , p(c[a]) = 0?

Answer: NO, consider c = $.

Let B = {a}.
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Building the Canonical Linear Representation

Let p = 2p2/3 − p3/4 :
∑

t p(t) = 1 and ∀t, p(t) ≥ 0.

p(a) =
7

12
, p(f (a, a)) =

269

1728
, p(f (a, f (a, a))) = p(f (f (a, a), a)) =

9823

248832
, . . .

Oracle: Is f (a, a) colinear to a?
i.e. ∃α, for every context c , p(c[f (a, a)]) = αp(c[a])?

Let B = {a}.
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Building the Canonical Linear Representation

Let p = 2p2/3 − p3/4 :
∑

t p(t) = 1 and ∀t, p(t) ≥ 0.

p(a) =
7

12
, p(f (a, a)) =

269

1728
, p(f (a, f (a, a))) = p(f (f (a, a), a)) =

9823

248832
, . . .

Oracle: Is f (a, a) colinear to a?
i.e. ∃α, for every context c , p(c[f (a, a)]) = αp(c[a])?

Answer: NO, consider c1 = $ and c2 = f (a, $).

Let B = {a, f (a, a)}.
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Building the Canonical Linear Representation

Let p = 2p2/3 − p3/4 :
∑

t p(t) = 1 and ∀t, p(t) ≥ 0.

p(a) =
7

12
, p(f (a, a)) =

269

1728
, p(f (a, f (a, a))) = p(f (f (a, a), a)) =

9823

248832
, . . .

Oracle: Is f (a, f (a, a)) colinear to a, f (a, a)?

Let B = {a, f (a, a)}.
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Building the Canonical Linear Representation

Let p = 2p2/3 − p3/4 :
∑

t p(t) = 1 and ∀t, p(t) ≥ 0.

p(a) =
7

12
, p(f (a, a)) =

269

1728
, p(f (a, f (a, a))) = p(f (f (a, a), a)) =

9823

248832
, . . .

Oracle: Is f (a, f (a, a)) colinear to a, f (a, a)?

Answer: YES,

f (a, f (a, a)) =
−54

24 × 34
a +

59

24 × 32
f (a, a).

Let B = {a, f (a, a)}.
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Let B = {a, f (a, a)}.

F. Denis, E. Gilbert, A. Habrard, F. Ouardi and M. Tommasi Representations for Rational Stochastic Tree Languages



The Basic Problem
A Canonical Linear Representation for Rational Tree Series

Contributions
Conclusion

Building the Canonical Linear Representation

Let p = 2p2/3 − p3/4 :
∑

t p(t) = 1 and ∀t, p(t) ≥ 0.

p(a) =
7

12
, p(f (a, a)) =

269

1728
, p(f (a, f (a, a))) = p(f (f (a, a), a)) =

9823

248832
, . . .

Oracle: Is f (f (a, a), a) colinear to a, f (a, a)?

Answer: YES,

f (a, f (a, a)) =
−54

24 × 34
a +

59

24 × 32
f (a, a).

Let B = {a, f (a, a)}.

F. Denis, E. Gilbert, A. Habrard, F. Ouardi and M. Tommasi Representations for Rational Stochastic Tree Languages



The Basic Problem
A Canonical Linear Representation for Rational Tree Series

Contributions
Conclusion

Building the Canonical Linear Representation

Let p = 2p2/3 − p3/4 :
∑

t p(t) = 1 and ∀t, p(t) ≥ 0.

p(a) =
7

12
, p(f (a, a)) =

269

1728
, p(f (a, f (a, a))) = p(f (f (a, a), a)) =

9823

248832
, . . .

Oracle: Is f (f (a, a), f (a, a)) colinear to a, f (a, a)?

Let B = {a, f (a, a)}.
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Building the Canonical Linear Representation

Let p = 2p2/3 − p3/4 :
∑

t p(t) = 1 and ∀t, p(t) ≥ 0.

p(a) =
7

12
, p(f (a, a)) =

269

1728
, p(f (a, f (a, a))) = p(f (f (a, a), a)) =

9823

248832
, . . .

Oracle: Is f (f (a, a), f (a, a)) colinear to a, f (a, a)?

Answer: YES,

f (f (a, a), f (a, a)) =
−3186

28 × 36
a +

2617

28 × 34
f (a, a).

Let B = {a, f (a, a)}.
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Building the Canonical Linear Representation

p = 2p2/3 − p3/4

B = {a, f (a, a)}.

µ(a) = a

µ(f )(a, a) = f (a, a)

µ(f )(a, f (a, a)) =
−54

24 × 34
a +

59

24 × 32
f (a, a)

µ(f )(f (a, a), a) =
−54

24 × 34
a +

59

24 × 32
f (a, a)

µ(f )(f (a, a), f (a, a)) =
−3186

28 × 36
a +

2617

28 × 34
f (a, a)

λ(a) = p(a) = 7
12

;λ(f (a, a)) = p(f (a, a)) = 269
1728
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Algorithm DEES; Independence Test

S a finite sample i.i.d. from p; B current basis; s vector candidate

∀αt ∈ R, s 6=
∑
t∈B

αtt

'

∧
c:∃t c[t]∈S

{
|pS(c[s])−

∑
t∈B

αtpS(c[t])| ≤ ε

}
has no solution.

Take ε = |S |−γ where γ ∈]0, 1/2[ (VC bounds).
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Properties of DEES

Theorem [F. Denis and A. Habrard, ALT’07]

DEES identifies the correct basis in the limit with probability one
and the parameters converge to the correct ones in O(|S |−1/2).

But ...

In the model output, the states may not define stochastic
languages.

The parameters are not normalized.

Before convergence, the model output may not define a
stochastic language.
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Normalization of the Model as a Generative Model
Strongly Consistent Model
Unranked Trees

The Normalization of the Model

q → q0, 7/12 + q1, 269/1728

q0 → a, 1 + f (q0, q1),
−54

2434
+ f (q1, q0),

−54

2434
+ f (q1, q1),

−3186

2836

q1 → f (q0, q0), 1 + f (q0, q1),
59

2432
+ f (q1, q0),

59

2432
+ f (q1, q1),

2617

2834
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Normalization of the Model as a Generative Model
Strongly Consistent Model
Unranked Trees

The Normalization of the Model

q → q0, 7/12 + q1, 269/1728

q0 → a, 1 + f (q0, q1),
−54

2434
+ f (q1, q0),

−54

2434
+ f (q1, q1),

−3186

2836

q1 → f (q0, q0), 1 + f (q0, q1),
59

2432
+ f (q1, q0),

59

2432
+ f (q1, q1),

2617

2834

Theorem

For any rational stochastic language, there exists a normalized
representation with a basis chosen to ensure that:

Each state defines a stochastic language.

The weights of the transitions are normalized.
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Normalization of the Model as a Generative Model
Strongly Consistent Model
Unranked Trees

After Renormalization

∀ state lhs: Sum of the transition weights is one.

∀ pair (state-lhs,symbol): Sum of the transition weights ≥ 0.

q → q0, 1

q0 → a,
7

12
+ f (q0, q0),

−269

50
+ f (q0, q1),

259

50
+ f (q1, q0),

259

50
,

+ f (q1, q1),
−1369

300

q1 → a,
269

444
+ f (q0, q0),

−3024

925
+ f (q0, q1),

2664

925
+ f (q1, q0),

2664

925

+ f (q1, q1),
−23273

11100

Efficient propagative method for computing the normalization.

Still negative weights → specific generation algorithm.
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Normalization of the Model as a Generative Model
Strongly Consistent Model
Unranked Trees

Notion of Strong Consistency

Rational Stochastic Tree Language Strongly Consistent

Bounded average tree size:
∑

t

p(t)|t| <∞

Theorem

For a strongly consistent RSTL, the spectral radius of the
”expectation matrix” A taken from the normalized representation
is strictly less than 1 (ρ(A) < 1).

Errata: Some hypotheses are missing in Proposition 1 see
http://hal.archives-ouvertes.fr/hal-00293511/en

(the series
∑

t∈T (F) pi (t) and
∑

t∈T (F) pi (t)|t| have to be absolutely

convergent)
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Normalization of the Model as a Generative Model
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Adapting the Framework to Unranked Trees

Unranked Trees

f

a a f

a f

Unranked tree series

⇔
Bijection

⇔
Equivalence

Ranked Trees
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All the inference results apply: Convert the data and use DEES
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Conclusion: Learning RSTL from i.i.d. samples

DEES may output irrelevant representations.

Our contributions:

Existence and construction of a normalized representation.

Algorithm for generating trees from the distribution.

Strong consistency.

Application to unranked trees.

⇒ When the models do not define stochastic languages, a
distribution can be extracted and controlled if ρ(A) < 1.

⇒ A prototype software is being developed (Piccata).
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