Relevant Representations for the Inference of Rational Stochastic Tree Languages

François Denis ${ }^{1}$ Edouard Gilbert ${ }^{2}$ Amaury Habrard ${ }^{1}$ Faïssal Ouardi ${ }^{1}$ Marc Tommasi ${ }^{2}$
${ }^{1}$ Laboratoire d'Informatique Fondamentale de Marseille (LIF) CNRS, Aix-Marseille Université, France
${ }^{2}$ Laboratoire d'Informatique Fondamentale de Lille (L.I.F.L.), INRIA and É.N.S. Cachan, France

$$
\text { ICGI } 2008
$$

Outline

(1) The Basic Problem
(2) A Canonical Linear Representation for Rational Tree Series
(3) Contributions

- Normalization of the Model as a Generative Model
- Strongly Consistent Model
- Unranked Trees

Outline

(1) The Basic Problem
(2) A Canonical Linear Representation for Rational Tree Series
(3) Contributions

- Normalization of the Model as a Generative Model
- Strongly Consistent Model
- Unranked Trees

Trees

$\mathcal{F}=\mathcal{F}_{0} \cup \mathcal{F}_{1} \cup \cdots \cup \mathcal{F}_{p}$: a ranked alphabet
\mathcal{F}_{m} : function symbols of arity m.
$T(\mathcal{F})$: all the trees constructed from \mathcal{F}.

Example:

$$
\mathcal{F}=\{f(\cdot, \cdot), a\} ; f(a, f(a, a)) \in T(\mathcal{F}) .
$$

Stochastic Tree Languages

Stochastic tree language: Probability distribution over $T(\mathcal{F})$

$$
p: T(\mathcal{F}) \rightarrow \mathbb{R}
$$

- for any $t \in T(\mathcal{F}), 0 \leq p(t) \leq 1$ and
- $\sum_{t \in T(\mathcal{F})} p(t)=1$.

Formal power tree series over $T(\mathcal{F})$

$$
r: T(\mathcal{F}) \rightarrow \mathbb{R}
$$

Notation: $\mathbb{R}\langle\langle T(\mathcal{F})\rangle\rangle$ (vector space).

A Basic Problem in Probabilistic Grammatical Inference

The Problem

Data $t_{1}, \ldots, t_{n} \in T(\mathcal{F})$ independently drawn according to a fixed unknown stochastic tree language p.
Goal Infer an estimate of p in some class of probabilistic models.

Probabilistic models

- Probabilistic tree automata
- Linear representations of rational tree series

Probabilistic Tree Automata

A distribution over $T(\mathcal{F})$ according to a PA with one state

$$
\begin{gathered}
\mathcal{A}_{\alpha}: \Delta_{\alpha}=\{q \xrightarrow{\alpha} a, \quad q \xrightarrow{1-\alpha} f(q, q)\}, \quad \tau(q)=1, \quad 0 \leq \alpha \leq 1 \\
p_{\alpha}(f(a, f(a, a)))=\alpha^{3}(1-\alpha)^{2}
\end{gathered}
$$

Less simple than in the word case

- p_{α} is a stochastic language iff $\alpha \geq 1 / 2$.
- Is it decidable whether a PA defines a stochastic language?
- The average tree size: $1 /(2 \alpha-1)$. Unbounded if $\alpha=1 / 2$.
- It is polynomially decidable whether a PA defines a stochastic language with bounded average size.

Linear Representations of Rational Tree Languages

A series $r \in \mathbb{R}\langle\langle T(\mathcal{F})\rangle\rangle$ is rational iff there exists a triple (V, μ, λ) :

- V is a finite dimensional vector space over \mathbb{R},
- μ maps any $f \in \mathcal{F}_{p}$ to a p-linear mapping $\mu(f) \in \mathcal{L}\left(V^{p} ; V\right)$,
- λ is a linear form $V \rightarrow \mathbb{R}$,
- $r(t)=\lambda \mu(t)$, where $\mu\left(f\left(t_{1}, \ldots, t_{p}\right)\right)=\mu(f)\left(\mu\left(t_{1}\right), \ldots, \mu\left(t_{p}\right)\right)$.

Example

- $V=\mathbb{R}$ and let $e_{1} \neq 0$ a basis of \mathbb{R},
- $\mu(a)=\alpha e_{1}, \mu(f)\left(e_{1}, e_{1}\right)=(1-\alpha) e_{1}$,
- $\lambda\left(e_{1}\right)=1$.

$$
\lambda \mu(f(a, f(a, a)))=\alpha^{3}(1-\alpha)^{2}
$$

Rational Stochastic Tree Languages

Stochastic languages

A rational stochastic tree language (RSTL) is a stochastic language that has a linear representation.

- Every stochastic language computed by a probabilistic automaton is rational.
- Some RSTL cannot be computed by a probabilistic automaton.
- It is undecidable whether a linear representation represents a stochastic language.
- A RSTL can be equivalently represented by a weighted tree automaton, minimal in the number of states (vector space).

Outline

(1) The Basic Problem
(2) A Canonical Linear Representation for Rational Tree Series
(3) Contributions

- Normalization of the Model as a Generative Model
- Strongly Consistent Model
- Unranked Trees

Word Languages: The Notion of Residual Languages

Languages: $\quad L \subseteq \Sigma^{*}, u \in \Sigma^{*}$

$$
u^{-1} L=\left\{v \in \Sigma^{*} \mid u v \in L\right\}
$$

Series: $\quad r \in \mathbb{R}\langle\langle T(\mathcal{F})\rangle\rangle, u \in \Sigma^{*}$

$$
\dot{u} r(v)=r(u v)
$$

Residual language is a key notion for inference because:

- residual languages are intrinsic components
- they are observable on samples
- they yield canonical representations.

Contexts

\$: a zero arity function symbol not in \mathcal{F}_{0}.
A context is an element of $T(\mathcal{F} \cup\{\$\})$ s.t. \$ appears exactly once. $C(\mathcal{F})$: all contexts over \mathcal{F}.
$c[t]$: the tree obtained by substituting $\$$ by t.
Example:

$$
c=f(a, \$) \quad c[f(a, a)]=f(a, f(a, a))
$$

An Algebraic Characterization of Rational Series

Contexts operate on tree series

Let $c \in C(\mathcal{F})$. Define $\dot{c}: \mathbb{R}\langle\langle T(\mathcal{F})\rangle\rangle \rightarrow \mathbb{R}\langle\langle T(\mathcal{F})\rangle\rangle$ by

$$
\dot{c} r(t)=r(c[t]) .
$$

Example

$c=f(a, \$), t=f(a, a), \dot{c} r(t)=r(f(a, f(a, a)))$.
Let $r \in T(\mathcal{F})$, consider $W_{r}=[\{\dot{c} r \mid c \in C(\mathcal{F})\}] \subseteq \mathbb{R}\langle\langle T(\mathcal{F})\rangle\rangle$
the vector subspace of $\mathbb{R}\langle\langle T(\mathcal{F})\rangle\rangle$ spanned by the series $\dot{c} r$.
Theorem: r is rational iff the dimension of W_{r} is finite.

The Canonical Linear Representation of Rational Series

$$
W_{r}=[\{\dot{c} r \mid c \in C(\mathcal{F})\}] ; W_{r}^{*} \text { dual space of } W_{r}
$$

- No natural linear representation of r on W_{r}

The Canonical Linear Representation of Rational Series

$$
W_{r}=[\{\dot{c} r \mid c \in C(\mathcal{F})\}] ; W_{r}^{*} \text { dual space of } W_{r}
$$

- No natural linear representation of r on W_{r}
- $T(\mathcal{F})$ is naturally embedded in W_{r}^{*} :

$$
t \rightarrow \bar{t} \text { s.t. } \bar{t}(\dot{c} r)=r(c[t])
$$

The Canonical Linear Representation of Rational Series

$$
W_{r}=[\{\dot{c} r \mid c \in C(\mathcal{F})\}] ; W_{r}^{*} \text { dual space of } W_{r}
$$

- No natural linear representation of r on W_{r}
- $T(\mathcal{F})$ is naturally embedded in W_{r}^{*} :

$$
t \rightarrow \bar{t} \text { s.t. } \bar{t}(\dot{c} r)=r(c[t])
$$

- $\{\bar{t} \mid t \in T(\mathcal{F})\}$ spans W_{r}^{*}

The Canonical Linear Representation of Rational Series

$$
W_{r}=[\{\dot{c} r \mid c \in C(\mathcal{F})\}] ; W_{r}^{*} \text { dual space of } W_{r}
$$

- No natural linear representation of r on W_{r}
- $T(\mathcal{F})$ is naturally embedded in W_{r}^{*} :

$$
t \rightarrow \bar{t} \text { s.t. } \bar{t}(\dot{c} r)=r(c[t])
$$

- $\{\bar{t} \mid t \in T(\mathcal{F})\}$ spans W_{r}^{*}
- the canonical linear representation of r : $\left(W_{r}^{*}, \mu, \lambda\right)$ where $\mu(t)=\bar{t}$ and $\lambda=r\left(W_{r}^{* *}=W_{r}\right)$

Building the Canonical Linear Representation

$$
\mathcal{F}=\{f(,), a\}, \tau(q)=1, p_{\alpha}: q \xrightarrow{\alpha} a, q \xrightarrow{1-\alpha} f(q, q)
$$

Building the Canonical Linear Representation

$$
\begin{aligned}
& \quad \mathcal{F}=\{f(,), a\}, \tau(q)=1, p_{\alpha}: q \xrightarrow{\alpha} a, q \xrightarrow{1-\alpha} f(q, q) \\
& \text { Let } p=2 p_{2 / 3}-p_{3 / 4}: \sum_{t} p(t)=1 \text { and } \forall t, p(t) \geq 0 .
\end{aligned}
$$

Building the Canonical Linear Representation

$$
\text { Let } p=2 p_{2 / 3}-p_{3 / 4}: \sum_{t} p(t)=1 \text { and } \forall t, p(t) \geq 0 .
$$

$$
p(a)=\frac{7}{12}, p(f(a, a))=\frac{269}{1728}, p(f(a, f(a, a)))=p(f(f(a, a), a))=\frac{9823}{248832}, \ldots
$$

Building the Canonical Linear Representation

$$
\text { Let } p=2 p_{2 / 3}-p_{3 / 4}: \sum_{t} p(t)=1 \text { and } \forall t, p(t) \geq 0 .
$$

$$
p(a)=\frac{7}{12}, p(f(a, a))=\frac{269}{1728}, p(f(a, f(a, a)))=p(f(f(a, a), a))=\frac{9823}{248832}, \ldots
$$

Oracle: Is $\bar{a}=0$? i.e. for every context $c, p(c[a])=0$?

Building the Canonical Linear Representation

$$
\text { Let } p=2 p_{2 / 3}-p_{3 / 4}: \sum_{t} p(t)=1 \text { and } \forall t, p(t) \geq 0 .
$$

$$
p(a)=\frac{7}{12}, p(f(a, a))=\frac{269}{1728}, p(f(a, f(a, a)))=p(f(f(a, a), a))=\frac{9823}{248832},
$$

Oracle: Is $\bar{a}=0$? i.e. for every context $c, p(c[a])=0$?
Answer: NO, consider $c=\$$.
Let $B=\{\bar{a}\}$.

Building the Canonical Linear Representation

$$
\text { Let } p=2 p_{2 / 3}-p_{3 / 4}: \sum_{t} p(t)=1 \text { and } \forall t, p(t) \geq 0 .
$$

$$
p(a)=\frac{7}{12}, p(f(a, a))=\frac{269}{1728}, p(f(a, f(a, a)))=p(f(f(a, a), a))=\frac{9823}{248832}, \ldots
$$

Oracle: Is $\overline{f(a, a)}$ colinear to \bar{a} ?
i.e. $\exists \alpha$, for every context $c, p(c[f(a, a)])=\alpha p(c[a])$?

Let $B=\{\bar{a}\}$.

Building the Canonical Linear Representation

$$
\text { Let } p=2 p_{2 / 3}-p_{3 / 4}: \sum_{t} p(t)=1 \text { and } \forall t, p(t) \geq 0 .
$$

$$
p(a)=\frac{7}{12}, p(f(a, a))=\frac{269}{1728}, p(f(a, f(a, a)))=p(f(f(a, a), a))=\frac{9823}{248832}, \ldots
$$

Oracle: Is $\overline{f(a, a)}$ colinear to \bar{a} ?
i.e. $\exists \alpha$, for every context $c, p(c[f(a, a)])=\alpha p(c[a])$?

Answer: NO, consider $c_{1}=\$$ and $c_{2}=f(a, \$)$.
Let $B=\{\bar{a}, \overline{f(a, a)}\}$.

Building the Canonical Linear Representation

$$
\text { Let } p=2 p_{2 / 3}-p_{3 / 4}: \sum_{t} p(t)=1 \text { and } \forall t, p(t) \geq 0 .
$$

$$
p(a)=\frac{7}{12}, p(f(a, a))=\frac{269}{1728}, p(f(a, f(a, a)))=p(f(f(a, a), a))=\frac{9823}{248832},
$$

Oracle: Is $\overline{f(a, f(a, a))}$ colinear to $\bar{a}, \overline{f(a, a)}$?

Let $B=\{\bar{a}, \overline{f(a, a)}\}$.

Building the Canonical Linear Representation

$$
\text { Let } p=2 p_{2 / 3}-p_{3 / 4}: \sum_{t} p(t)=1 \text { and } \forall t, p(t) \geq 0
$$

$$
p(a)=\frac{7}{12}, p(f(a, a))=\frac{269}{1728}, p(f(a, f(a, a)))=p(f(f(a, a), a))=\frac{9823}{248832}, \ldots
$$

Oracle: Is $\overline{f(a, f(a, a))}$ colinear to $\bar{a}, \overline{f(a, a)}$?
Answer: YES,

$$
\overline{f(a, f(a, a))}=\frac{-54}{2^{4} \times 3^{4}} \bar{a}+\frac{59}{2^{4} \times 3^{2}} \overline{f(a, a)} .
$$

Let $B=\{\bar{a}, \overline{f(a, a)}\}$.

Building the Canonical Linear Representation

$$
\text { Let } p=2 p_{2 / 3}-p_{3 / 4}: \sum_{t} p(t)=1 \text { and } \forall t, p(t) \geq 0 .
$$

$$
p(a)=\frac{7}{12}, p(f(a, a))=\frac{269}{1728}, p(f(a, f(a, a)))=p(f(f(a, a), a))=\frac{9823}{248832},
$$

Oracle: Is $\overline{f(f(a, a), a)}$ colinear to $\bar{a}, \overline{f(a, a)}$?

Let $B=\{\bar{a}, \overline{f(a, a)}\}$.

Building the Canonical Linear Representation

$$
\text { Let } p=2 p_{2 / 3}-p_{3 / 4}: \sum_{t} p(t)=1 \text { and } \forall t, p(t) \geq 0
$$

$$
p(a)=\frac{7}{12}, p(f(a, a))=\frac{269}{1728}, p(f(a, f(a, a)))=p(f(f(a, a), a))=\frac{9823}{248832}, \ldots
$$

Oracle: Is $\overline{f(f(a, a), a)}$ colinear to $\bar{a}, \overline{f(a, a)}$?
Answer: YES,

$$
\overline{f(a, f(a, a))}=\frac{-54}{2^{4} \times 3^{4}} \bar{a}+\frac{59}{2^{4} \times 3^{2}} \overline{f(a, a)} .
$$

Let $B=\{\bar{a}, \overline{f(a, a)}\}$.

Building the Canonical Linear Representation

$$
\text { Let } p=2 p_{2 / 3}-p_{3 / 4}: \sum_{t} p(t)=1 \text { and } \forall t, p(t) \geq 0 .
$$

$$
p(a)=\frac{7}{12}, p(f(a, a))=\frac{269}{1728}, p(f(a, f(a, a)))=p(f(f(a, a), a))=\frac{9823}{248832},
$$

Oracle: Is $\overline{f(f(a, a), f(a, a))}$ colinear to $\bar{a}, \overline{f(a, a)}$?

Let $B=\{\bar{a}, \overline{f(a, a)}\}$.

Building the Canonical Linear Representation

$$
\text { Let } p=2 p_{2 / 3}-p_{3 / 4}: \sum_{t} p(t)=1 \text { and } \forall t, p(t) \geq 0
$$

$$
p(a)=\frac{7}{12}, p(f(a, a))=\frac{269}{1728}, p(f(a, f(a, a)))=p(f(f(a, a), a))=\frac{9823}{248832}, \ldots
$$

Oracle: Is $\overline{f(f(a, a), f(a, a))}$ colinear to $\bar{a}, \overline{f(a, a)}$?
Answer: YES,

$$
\overline{f(f(a, a), f(a, a))}=\frac{-3186}{2^{8} \times 3^{6}} \bar{a}+\frac{2617}{2^{8} \times 3^{4}} \overline{f(a, a)} .
$$

Let $B=\{\bar{a}, \overline{f(a, a)}\}$.

Building the Canonical Linear Representation

$$
\begin{aligned}
& p=2 p_{2 / 3}-p_{3 / 4} \\
& B=\{\bar{a}, \overline{f(a, a)}\} . \\
& \mu(a)=\bar{a} \\
& \mu(f)(\bar{a}, \bar{a})=\overline{f(a, a)} \\
& \mu(f)(\bar{a}, \overline{f(a, a)})=\frac{-54}{2^{4} \times 3^{4}} \bar{a}+\frac{59}{2^{4} \times 3^{2}} \overline{f(a, a)} \\
& \mu(f)(\overline{f(a, a)}, \bar{a})=\frac{-54}{2^{4} \times 3^{4}} \bar{a}+\frac{59}{2^{4} \times 3^{2}} \overline{f(a, a)} \\
& \mu(f)(\overline{f(a, a)}, \overline{f(a, a)})=\frac{-3186}{2^{8} \times 3^{6}} \bar{a}+\frac{2617}{2^{8} \times 3^{4}} \overline{f(a, a)} \\
& \lambda(\bar{a})=p(a)=\frac{7}{12} ; \lambda(\overline{f(a, a)})=p(f(a, a))=\frac{269}{1^{1728}}
\end{aligned}
$$

Algorithm DEES; Independence Test

S a finite sample i.i.d. from $p ; B$ current basis; s vector candidate

$$
\forall \alpha_{t} \in \mathbb{R}, \bar{s} \neq \sum_{t \in B} \alpha_{t} \bar{t}
$$

\simeq

$$
\bigwedge_{c: \exists t c[t] \in S}\left\{\left|p_{S}(c[s])-\sum_{t \in B} \alpha_{t} p_{S}(c[t])\right| \leq \epsilon\right\} \text { has no solution. }
$$

Take $\epsilon=|S|^{-\gamma}$ where $\left.\gamma \in\right] 0,1 / 2[$ (VC bounds).

Properties of DEES

Theorem [F. Denis and A. Habrard, ALT'07]

DEES identifies the correct basis in the limit with probability one and the parameters converge to the correct ones in $O\left(|S|^{-1 / 2}\right)$.

But ...

- In the model output, the states may not define stochastic languages.
- The parameters are not normalized.
- Before convergence, the model output may not define a stochastic language.

The Basic Problem

Outline

(1) The Basic Problem

(2) A Canonical Linear Representation for Rational Tree Series
(3) Contributions

- Normalization of the Model as a Generative Model
- Strongly Consistent Model
- Unranked Trees

The Normalization of the Model

$$
\begin{aligned}
q & \rightarrow q_{0}, 7 / 12+q_{1}, 269 / 1728 \\
q_{0} & \rightarrow a, 1+f\left(q_{0}, q_{1}\right), \frac{-54}{2^{4} 3^{4}}+f\left(q_{1}, q_{0}\right), \frac{-54}{2^{4} 3^{4}}+f\left(q_{1}, q_{1}\right), \frac{-3186}{2^{8} 3^{6}} \\
q_{1} & \rightarrow f\left(q_{0}, q_{0}\right), 1+f\left(q_{0}, q_{1}\right), \frac{59}{2^{4} 3^{2}}+f\left(q_{1}, q_{0}\right), \frac{59}{2^{4} 3^{2}}+f\left(q_{1}, q_{1}\right), \frac{2617}{2^{8} 3^{4}}
\end{aligned}
$$

The Normalization of the Model

$$
\begin{aligned}
q & \rightarrow q_{0}, 7 / 12+q_{1}, 269 / 1728 \\
q_{0} & \rightarrow a, 1+f\left(q_{0}, q_{1}\right), \frac{-54}{2^{4} 3^{4}}+f\left(q_{1}, q_{0}\right), \frac{-54}{2^{4} 3^{4}}+f\left(q_{1}, q_{1}\right), \frac{-3186}{2^{8} 3^{6}} \\
q_{1} & \rightarrow f\left(q_{0}, q_{0}\right), 1+f\left(q_{0}, q_{1}\right), \frac{59}{2^{4} 3^{2}}+f\left(q_{1}, q_{0}\right), \frac{59}{2^{4} 3^{2}}+f\left(q_{1}, q_{1}\right), \frac{2617}{2^{8} 3^{4}}
\end{aligned}
$$

Theorem

For any rational stochastic language, there exists a normalized representation with a basis chosen to ensure that:

- Each state defines a stochastic language.
- The weights of the transitions are normalized.

After Renormalization

- \forall state lhs: Sum of the transition weights is one.
- \forall pair (state-lhs,symbol): Sum of the transition weights ≥ 0.

$$
\begin{aligned}
q \rightarrow & q_{0}, 1 \\
q_{0} \rightarrow & a, \frac{7}{12}+f\left(q_{0}, q_{0}\right), \frac{-269}{50}+f\left(q_{0}, q_{1}\right), \frac{259}{50}+f\left(q_{1}, q_{0}\right), \frac{259}{50}, \\
& +f\left(q_{1}, q_{1}\right), \frac{-1369}{300} \\
q_{1} \rightarrow & a, \frac{269}{444}+f\left(q_{0}, q_{0}\right), \frac{-3024}{925}+f\left(q_{0}, q_{1}\right), \frac{2664}{925}+f\left(q_{1}, q_{0}\right), \frac{2664}{925} \\
& +f\left(q_{1}, q_{1}\right), \frac{-23273}{11100}
\end{aligned}
$$

- Efficient propagative method for computing the normalization.
- Still negative weights \rightarrow specific generation algorithm.

Notion of Strong Consistency

Rational Stochastic Tree Language Strongly Consistent

$$
\text { Bounded average tree size: } \sum_{t} p(t)|t|<\infty
$$

Theorem

For a strongly consistent RSTL, the spectral radius of the "expectation matrix" A taken from the normalized representation is strictly less than $1(\rho(A)<1)$.

Errata: Some hypotheses are missing in Proposition 1 see http://hal.archives-ouvertes.fr/hal-00293511/en (the series $\sum_{t \in T(\mathcal{F})} p_{i}(t)$ and $\sum_{t \in T(\mathcal{F})} p_{i}(t)|t|$ have to be absolutely convergent)

Adapting the Framework to Unranked Trees

- Unranked tree series

Ranked Trees

$$
\mathcal{F}_{0}=\{a, f\} \mathcal{F}_{2}=\{@\}
$$

All the inference results apply: Convert the data and use DEES

Conclusion: Learning RSTL from i.i.d. samples

- DEES may output irrelevant representations.
- Our contributions:
- Existence and construction of a normalized representation.
- Algorithm for generating trees from the distribution.
- Strong consistency.
- Application to unranked trees.
- \Rightarrow When the models do not define stochastic languages, a distribution can be extracted and controlled if $\rho(A)<1$.
- \Rightarrow A prototype software is being developed (Piccata).

