> Relevant Representations for the Inference of Rational Stochastic Tree Languages

François Denis¹ Edouard Gilbert² Amaury Habrard¹ Faïssal Ouardi¹ Marc Tommasi²

¹Laboratoire d'Informatique Fondamentale de Marseille (LIF) CNRS, Aix-Marseille Université, France

 $^2 Laboratoire d'Informatique Fondamentale de Lille (L.I.F.L.), INRIA and É.N.S. Cachan, France$

ICGI 2008

Outline

1 The Basic Problem

2 A Canonical Linear Representation for Rational Tree Series

3 Contributions

- Normalization of the Model as a Generative Model
- Strongly Consistent Model
- Unranked Trees

(4回) (4回) (4回)

The Basic Problem

A Canonical Linear Representation for Rational Tree Series Contributions Conclusion

Outline

1 The Basic Problem

2 A Canonical Linear Representation for Rational Tree Series

3 Contributions

- Normalization of the Model as a Generative Model
- Strongly Consistent Model
- Unranked Trees

<ロ> (日) (日) (日) (日) (日)

Trees

 $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_1 \cup \cdots \cup \mathcal{F}_p$: a ranked alphabet

 \mathcal{F}_m : function symbols of *arity m*.

 $T(\mathcal{F})$: all the *trees* constructed from \mathcal{F} .

F. Denis, E. Gilbert, A. Habrard, F. Ouardi and M. Tommasi

Representations for Rational Stochastic Tree Languages

Stochastic Tree Languages

Stochastic tree language: Probability distribution over $T(\mathcal{F})$ $p: T(\mathcal{F}) \to \mathbb{R}$

• for any $t \in \mathcal{T}(\mathcal{F})$, $0 \leq p(t) \leq 1$ and

•
$$\sum_{t\in T(\mathcal{F})} p(t) = 1.$$

Formal power tree series over $T(\mathcal{F})$

 $r: T(\mathcal{F}) \rightarrow \mathbb{R}.$

Notation: $\mathbb{R}\langle\langle T(\mathcal{F})\rangle\rangle$ (vector space).

(ロ) (同) (E) (E) (E)

A Basic Problem in Probabilistic Grammatical Inference

The Problem

- Data $t_1, \ldots, t_n \in T(\mathcal{F})$ independently drawn according to a fixed unknown stochastic tree language p.
- Goal Infer an estimate of p in some class of probabilistic models.

Probabilistic models

- Probabilistic tree automata
- Linear representations of rational tree series

▲□→ ▲目→ ▲目→

Probabilistic Tree Automata

A distribution over $T(\mathcal{F})$ according to a PA with one state

$$\mathcal{A}_{\boldsymbol{lpha}}: \ \Delta_{\boldsymbol{lpha}} = \{q \stackrel{\boldsymbol{lpha}}{\to} a, \ q \stackrel{1-\boldsymbol{lpha}}{\to} f(q,q)\}, \ \tau(q) = 1, \ 0 \leq \boldsymbol{lpha} \leq 1$$

$$p_{\alpha}(f(a, f(a, a))) = \alpha^3(1 - \alpha)^2$$

Less simple than in the word case

- p_{α} is a stochastic language iff $\alpha \geq 1/2$.
- Is it decidable whether a PA defines a stochastic language?
- The average tree size: $1/(2\alpha 1)$. Unbounded if $\alpha = 1/2$.
- It is polynomially decidable whether a PA defines a stochastic language with bounded average size.

(ロ) (同) (E) (E) (E)

Linear Representations of Rational Tree Languages

A series $r \in \mathbb{R}\langle \langle T(\mathcal{F}) \rangle \rangle$ is rational iff there exists a triple (V, μ, λ) :

- V is a finite dimensional vector space over \mathbb{R} ,
- μ maps any $f \in \mathcal{F}_p$ to a *p*-linear mapping $\mu(f) \in \mathcal{L}(V^p; V)$,

•
$$\lambda$$
 is a linear form $V o \mathbb{R}$,

•
$$r(t) = \lambda \mu(t)$$
, where $\mu(f(t_1, \ldots, t_p)) = \mu(f)(\mu(t_1), \ldots, \mu(t_p))$.

Example

- $V = \mathbb{R}$ and let $e_1 \neq 0$ a basis of \mathbb{R} ,
- $\mu(a) = \alpha e_1, \ \mu(f)(e_1, e_1) = (1 \alpha)e_1,$

•
$$\lambda(e_1) = 1$$
.

$$\lambda \mu(f(a, f(a, a))) = \alpha^3 (1 - \alpha)^2$$

э

Rational Stochastic Tree Languages

Stochastic languages

A *rational stochastic tree language (RSTL)* is a stochastic language that has a linear representation.

- Every stochastic language computed by a probabilistic automaton is rational.
- Some RSTL cannot be computed by a probabilistic automaton.
- It is undecidable whether a linear representation represents a stochastic language.
- A RSTL can be equivalently represented by a weighted tree automaton, minimal in the number of states (vector space).

- 4 回 ト 4 ヨ ト 4 ヨ ト

Outline

1 The Basic Problem

2 A Canonical Linear Representation for Rational Tree Series

3 Contributions

- Normalization of the Model as a Generative Model
- Strongly Consistent Model
- Unranked Trees

イロン イヨン イヨン イヨン

Word Languages: The Notion of Residual Languages

Languages: $L \subseteq \Sigma^*, u \in \Sigma^*$ $u^{-1}L = \{v \in \Sigma^* | uv \in L\}$ Series: $r \in \mathbb{R}\langle\langle T(\mathcal{F}) \rangle\rangle, u \in \Sigma^*$ $\dot{u}r(v) = r(uv)$

Residual language is a key notion for inference because:

- residual languages are intrinsic components
- they are observable on samples
- they yield canonical representations.

イロト イポト イラト イラト 一日

Contexts

: a zero arity function symbol not in \mathcal{F}_0 .

A context is an element of $T(\mathcal{F} \cup \{\$\})$ s.t. \$ appears exactly once. $C(\mathcal{F})$: all contexts over \mathcal{F} .

c[t]: the tree obtained by substituting \$ by t.

F. Denis, E. Gilbert, A. Habrard, F. Ouardi and M. Tommasi

Representations for Rational Stochastic Tree Languages

An Algebraic Characterization of Rational Series

Contexts operate on tree series

Let $c \in C(\mathcal{F})$. Define $\dot{c} : \mathbb{R}\langle\langle T(\mathcal{F}) \rangle\rangle \to \mathbb{R}\langle\langle T(\mathcal{F}) \rangle\rangle$ by

 $\dot{c}r(t)=r(c[t]).$

Example

$$c = f(a, \$), t = f(a, a), \dot{c}r(t) = r(f(a, f(a, a))).$$

Let $r \in T(\mathcal{F})$, consider $W_r = [\{\dot{c}r | c \in C(\mathcal{F})\}] \subseteq \mathbb{R}\langle\langle T(\mathcal{F}) \rangle\rangle$

the vector subspace of $\mathbb{R}\langle\langle T(\mathcal{F})\rangle\rangle$ spanned by the series $\dot{c}r$.

Theorem: r is rational iff the dimension of W_r is finite.

The Canonical Linear Representation of Rational Series

 $W_r = [\{\dot{c}r | c \in C(\mathcal{F})\}]; W_r^*$ dual space of W_r

• No natural linear representation of r on W_r

F. Denis, E. Gilbert, A. Habrard, F. Ouardi and M. Tommasi Representations for Rational Stochastic Tree Languages

・ 同 ト ・ ヨ ト ・ ヨ ト

The Canonical Linear Representation of Rational Series

 $W_r = [\{\dot{c}r | c \in C(\mathcal{F})\}]; W_r^*$ dual space of W_r

- No natural linear representation of r on W_r
- $T(\mathcal{F})$ is naturally embedded in W_r^* :

 $t \to \overline{t} \text{ s.t. } \overline{t}(\dot{c}r) = r(c[t])$

・ 同 ト ・ ヨ ト ・ ヨ ト

The Canonical Linear Representation of Rational Series

 $W_r = [\{\dot{c}r | c \in C(\mathcal{F})\}]; W_r^*$ dual space of W_r

- No natural linear representation of r on W_r
- $T(\mathcal{F})$ is naturally embedded in W_r^* :

 $t \to \overline{t}$ s.t. $\overline{t}(\dot{c}r) = r(c[t])$

(4月) (4日) (4日)

• $\{\overline{t}|t\in T(\mathcal{F})\}$ spans W_r^*

The Canonical Linear Representation of Rational Series

$$W_r = [\{\dot{c}r | c \in C(\mathcal{F})\}]; W_r^* \text{ dual space of } W_r$$

- No natural linear representation of r on W_r
- $T(\mathcal{F})$ is naturally embedded in W_r^* :

 $t \to \overline{t}$ s.t. $\overline{t}(\dot{c}r) = r(c[t])$

- 4 同 6 4 日 6 4 日 6

- $\{\overline{t}|t\in \mathcal{T}(\mathcal{F})\}$ spans W^*_r
- the canonical linear representation of r: (W_r^*, μ, λ) where $\mu(t) = \overline{t}$ and $\lambda = r (W_r^{**} = W_r)$

Building the Canonical Linear Representation

$$\mathcal{F} = \{f(,), a\}, \tau(q) = 1, p_{\alpha} : q \xrightarrow{\alpha} a, q \xrightarrow{1-\alpha} f(q,q)$$

F. Denis, E. Gilbert, A. Habrard, F. Ouardi and M. Tommasi Representations for Rational Stochastic Tree Languages

<回> < 回> < 回> < 回>

Building the Canonical Linear Representation

$$\mathcal{F} = \{f(,), a\}, au(q) = 1, p_{lpha} : q \stackrel{lpha}{
ightarrow} a, q \stackrel{1-lpha}{
ightarrow} f(q,q)$$

Let
$$p = 2p_{2/3} - p_{3/4}$$
: $\sum_t p(t) = 1$ and $\forall t, p(t) \ge 0$.

F. Denis, E. Gilbert, A. Habrard, F. Ouardi and M. Tommasi Representations for Rational Stochastic Tree Languages

回 と く ヨ と く ヨ と

Building the Canonical Linear Representation

Let
$$p = 2p_{2/3} - p_{3/4}$$
: $\sum_t p(t) = 1$ and $\forall t, p(t) \ge 0$.

$$p(a) = \frac{7}{12}, p(f(a, a)) = \frac{269}{1728}, p(f(a, f(a, a))) = p(f(f(a, a), a)) = \frac{9823}{248832}, \dots$$

F. Denis, E. Gilbert, A. Habrard, F. Ouardi and M. Tommasi Representations for Rational Stochastic Tree Languages

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Building the Canonical Linear Representation

Let
$$p = 2p_{2/3} - p_{3/4}$$
: $\sum_t p(t) = 1$ and $\forall t, p(t) \ge 0$.

$$p(a) = \frac{7}{12}, p(f(a, a)) = \frac{269}{1728}, p(f(a, f(a, a))) = p(f(f(a, a), a)) = \frac{9823}{248832}, \dots$$

Oracle: Is $\overline{a} = 0$? i.e. for every context c, p(c[a]) = 0?

F. Denis, E. Gilbert, A. Habrard, F. Ouardi and M. Tommasi Representations for Rational Stochastic Tree Languages

- 4 同 2 4 日 2 4 日 2

Building the Canonical Linear Representation

Let
$$p = 2p_{2/3} - p_{3/4}$$
: $\sum_t p(t) = 1$ and $\forall t, p(t) \ge 0$.

$$p(a) = \frac{7}{12}, p(f(a, a)) = \frac{269}{1728}, p(f(a, f(a, a))) = p(f(f(a, a), a)) = \frac{9823}{248832}, \dots$$

Oracle: Is $\overline{a} = 0$? i.e. for every context c, p(c[a]) = 0?

Answer: NO, consider c =\$.

Let $B = \{\overline{a}\}.$

・ロト ・日本 ・モート ・モート

Building the Canonical Linear Representation

Let $p = 2p_{2/3} - p_{3/4}$: $\sum_t p(t) = 1$ and $\forall t, p(t) \ge 0$.

$$p(a) = \frac{7}{12}, p(f(a, a)) = \frac{269}{1728}, p(f(a, f(a, a))) = p(f(f(a, a), a)) = \frac{9823}{248832}, \dots$$

Oracle: Is f(a, a) colinear to \overline{a} ? i.e. $\exists \alpha$, for every context c, $p(c[f(a, a)]) = \alpha p(c[a])$?

Let $B = \{\overline{a}\}.$

・ロト ・回ト ・ヨト ・ヨト

Building the Canonical Linear Representation

Let $p = 2p_{2/3} - p_{3/4}$: $\sum_t p(t) = 1$ and $\forall t, p(t) \ge 0$.

$$p(a) = \frac{7}{12}, p(f(a, a)) = \frac{269}{1728}, p(f(a, f(a, a))) = p(f(f(a, a), a)) = \frac{9823}{248832}, \dots$$

Oracle: Is f(a, a) colinear to \overline{a} ? i.e. $\exists \alpha$, for every context c, $p(c[f(a, a)]) = \alpha p(c[a])$?

Answer: NO, consider $c_1 =$ \$ and $c_2 = f(a,$ \$).

Let $B = \{\overline{a}, \overline{f(a, a)}\}.$

F. Denis, E. Gilbert, A. Habrard, F. Ouardi and M. Tommasi

Representations for Rational Stochastic Tree Languages

- - 4 回 ト - 4 回 ト

Building the Canonical Linear Representation

Let
$$p = 2p_{2/3} - p_{3/4}$$
: $\sum_t p(t) = 1$ and $\forall t, p(t) \ge 0$.

$$p(a) = \frac{7}{12}, p(f(a, a)) = \frac{269}{1728}, p(f(a, f(a, a))) = p(f(f(a, a), a)) = \frac{9823}{248832}, \dots$$

Oracle: Is $\overline{f(a, f(a, a))}$ colinear to $\overline{a}, \overline{f(a, a)}$?

Let $B = \{\overline{a}, \overline{f(a, a)}\}.$

・ロン ・回 と ・ ヨ と ・ ヨ と

Building the Canonical Linear Representation

Let $p = 2p_{2/3} - p_{3/4}$: $\sum_t p(t) = 1$ and $\forall t, p(t) \ge 0$.

$$p(a) = \frac{7}{12}, p(f(a, a)) = \frac{269}{1728}, p(f(a, f(a, a))) = p(f(f(a, a), a)) = \frac{9823}{248832}, \dots$$

Oracle: Is $\overline{f(a, f(a, a))}$ colinear to $\overline{a}, \overline{f(a, a)}$?

Answer: YES,

$$\overline{f(a,f(a,a))} = \frac{-54}{2^4 \times 3^4} \overline{a} + \frac{59}{2^4 \times 3^2} \overline{f(a,a)}.$$

Let $B = \{\overline{a}, \overline{f(a, a)}\}.$

F. Denis, E. Gilbert, A. Habrard, F. Ouardi and M. Tommasi

Representations for Rational Stochastic Tree Languages

Building the Canonical Linear Representation

Let
$$p = 2p_{2/3} - p_{3/4}$$
: $\sum_t p(t) = 1$ and $\forall t, p(t) \ge 0$.

$$p(a) = \frac{7}{12}, p(f(a, a)) = \frac{269}{1728}, p(f(a, f(a, a))) = p(f(f(a, a), a)) = \frac{9823}{248832}, \dots$$

Oracle: Is $\overline{f(f(a, a), a)}$ colinear to $\overline{a}, \overline{f(a, a)}$?

Let $B = \{\overline{a}, \overline{f(a, a)}\}.$

・ロン ・回と ・ヨン・

Building the Canonical Linear Representation

Let $p = 2p_{2/3} - p_{3/4}$: $\sum_t p(t) = 1$ and $\forall t, p(t) \ge 0$.

$$p(a) = \frac{7}{12}, p(f(a, a)) = \frac{269}{1728}, p(f(a, f(a, a))) = p(f(f(a, a), a)) = \frac{9823}{248832}, \dots$$

Oracle: Is $\overline{f(f(a, a), a)}$ colinear to $\overline{a}, \overline{f(a, a)}$?

Answer: YES,

$$\overline{f(a,f(a,a))} = \frac{-54}{2^4 \times 3^4} \overline{a} + \frac{59}{2^4 \times 3^2} \overline{f(a,a)}.$$

Let $B = \{\overline{a}, \overline{f(a, a)}\}.$

F. Denis, E. Gilbert, A. Habrard, F. Ouardi and M. Tommasi

Representations for Rational Stochastic Tree Languages

Building the Canonical Linear Representation

Let
$$p = 2p_{2/3} - p_{3/4}$$
: $\sum_t p(t) = 1$ and $\forall t, p(t) \ge 0$.

$$p(a) = \frac{7}{12}, p(f(a, a)) = \frac{269}{1728}, p(f(a, f(a, a))) = p(f(f(a, a), a)) = \frac{9823}{248832}, \dots$$

Oracle: Is $\overline{f(f(a, a), f(a, a))}$ colinear to $\overline{a}, \overline{f(a, a)}$?

Let $B = \{\overline{a}, \overline{f(a, a)}\}.$

・ロン ・回と ・ヨン・

Building the Canonical Linear Representation

Let $p = 2p_{2/3} - p_{3/4}$: $\sum_t p(t) = 1$ and $\forall t, p(t) \ge 0$.

$$p(a) = \frac{7}{12}, p(f(a, a)) = \frac{269}{1728}, p(f(a, f(a, a))) = p(f(f(a, a), a)) = \frac{9823}{248832}, \dots$$

Oracle: Is $\overline{f(f(a, a), f(a, a))}$ colinear to $\overline{a}, \overline{f(a, a)}$?

Answer: YES,

$$\overline{f(f(a,a),f(a,a))} = \frac{-3186}{2^8 \times 3^6} \overline{a} + \frac{2617}{2^8 \times 3^4} \overline{f(a,a)}.$$

Let $B = \{\overline{a}, \overline{f(a, a)}\}.$

F. Denis, E. Gilbert, A. Habrard, F. Ouardi and M. Tommasi Re

Representations for Rational Stochastic Tree Languages

Building the Canonical Linear Representation

 $p = 2p_{2/3} - p_{3/4}$

 $B = \{\overline{a}, \overline{f(a, a)}\}.$ $\mu(a) = \overline{a}$ $\mu(f)(\overline{a},\overline{a}) = \overline{f(a,a)}$ $\mu(f)(\overline{a},\overline{f(a,a)}) = \frac{-54}{2^4 \times 3^4} \overline{a} + \frac{59}{2^4 \times 3^2} \overline{f(a,a)}$ $\mu(f)(\overline{f(a,a)},\overline{a}) = \frac{-54}{2^4 \times 3^4}\overline{a} + \frac{59}{2^4 \times 3^2}\overline{f(a,a)}$ $\mu(f)(\overline{f(a,a)},\overline{f(a,a)}) = \frac{-3186}{28 \times 36}\overline{a} + \frac{2617}{28 \times 34}\overline{f(a,a)}$ $\lambda(\overline{a}) = p(a) = \frac{7}{12}; \lambda(\overline{f(a,a)}) = p(f(a,a)) = \frac{269}{1728}$

イロト イポト イヨト イヨト

Algorithm DEES; Independence Test

S a finite sample i.i.d. from p; B current basis; s vector candidate

$$\forall \alpha_t \in \mathbb{R}, \overline{s} \neq \sum_{t \in B} \alpha_t \overline{t}$$

 \simeq

$$\bigwedge_{c:\exists t} \left\{ |p_{\mathcal{S}}(c[s]) - \sum_{t \in B} \alpha_t p_{\mathcal{S}}(c[t])| \le \epsilon \right\} \text{ has no solution.}$$

Take $\epsilon = |\mathcal{S}|^{-\gamma}$ where $\gamma \in]0, 1/2[$ (VC bounds).

- 4 同 2 4 日 2 4 日 2

Properties of DEES

Theorem [F. Denis and A. Habrard, ALT'07]

DEES identifies the correct basis in the limit with probability one and the parameters converge to the correct ones in $O(|S|^{-1/2})$.

But ...

- In the model output, the states may not define stochastic languages.
- The parameters are not normalized.
- Before convergence, the model output may not define a stochastic language.

イロン イヨン イヨン イヨン

The Basic Problem A Canonical Linear Representation for Rational Tree Series Contributions Conclusion Of the Model as a Generative Model Strongly Consistent Model Unranked Trees

Outline

1 The Basic Problem

2 A Canonical Linear Representation for Rational Tree Series

3 Contributions

- Normalization of the Model as a Generative Model
- Strongly Consistent Model
- Unranked Trees

イロト イヨト イヨト イヨト

Normalization of the Model as a Generative Model Strongly Consistent Model Unranked Trees

・ロン ・回 と ・ ヨン ・ ヨン

æ

The Normalization of the Model

$$egin{aligned} q &
ightarrow q_0, 7/12 + q_1, 269/1728 \ q_0 &
ightarrow a, 1 + f(q_0, q_1), rac{-54}{2^4 3^4} + f(q_1, q_0), rac{-54}{2^4 3^4} + f(q_1, q_1), rac{-3186}{2^8 3^6} \ q_1 &
ightarrow f(q_0, q_0), 1 + f(q_0, q_1), rac{59}{2^4 3^2} + f(q_1, q_0), rac{59}{2^4 3^2} + f(q_1, q_1), rac{2617}{2^8 3^4} \end{aligned}$$

F. Denis, E. Gilbert, A. Habrard, F. Ouardi and M. Tommasi Representations for Rational Stochastic Tree Languages

Normalization of the Model as a Generative Model Strongly Consistent Model Unranked Trees

イロト イポト イヨト イヨト

The Normalization of the Model

$$\begin{split} q &\to q_0, 7/12 + q_1, 269/1728 \\ q_0 &\to a, 1 + f(q_0, q_1), \frac{-54}{2^4 3^4} + f(q_1, q_0), \frac{-54}{2^4 3^4} + f(q_1, q_1), \frac{-3186}{2^8 3^6} \\ q_1 &\to f(q_0, q_0), 1 + f(q_0, q_1), \frac{59}{2^4 3^2} + f(q_1, q_0), \frac{59}{2^4 3^2} + f(q_1, q_1), \frac{2617}{2^8 3^4} \end{split}$$

Theorem

For any rational stochastic language, there exists a normalized representation with a basis chosen to ensure that:

- Each state defines a stochastic language.
- The weights of the transitions are normalized.

Normalization of the Model as a Generative Model Strongly Consistent Model Unranked Trees

After Renormalization

- $\bullet~\forall$ state lhs: Sum of the transition weights is one.
- \forall pair (state-lhs,symbol): Sum of the transition weights \geq 0.

$$egin{aligned} q &
ightarrow q_0, 1 \ q_0 &
ightarrow a, rac{7}{12} + f(q_0, q_0), rac{-269}{50} + f(q_0, q_1), rac{259}{50} + f(q_1, q_0), rac{259}{50}, \ &
ightarrow f(q_1, q_1), rac{-1369}{300} \ q_1 &
ightarrow a, rac{269}{444} + f(q_0, q_0), rac{-3024}{925} + f(q_0, q_1), rac{2664}{925} + f(q_1, q_0), rac{2664}{925} \ &
ightarrow f(q_1, q_1), rac{-23273}{11100} \end{aligned}$$

Efficient propagative method for computing the normalization.
Still negative weights → specific generation algorithm.

F. Denis, E. Gilbert, A. Habrard, F. Ouardi and M. Tommasi

Representations for Rational Stochastic Tree Languages

Normalization of the Model as a Generative Model Strongly Consistent Model Unranked Trees

・ロン ・回と ・ヨン・

Notion of Strong Consistency

Rational Stochastic Tree Language Strongly Consistent

Bounded average tree size: $\sum p(t)|t| < \infty$

Theorem

For a strongly consistent RSTL, the spectral radius of the "expectation matrix" A taken from the normalized representation is strictly less than 1 ($\rho(A) < 1$).

Errata: Some hypotheses are missing in Proposition 1 see http://hal.archives-ouvertes.fr/hal-00293511/en (the series $\sum_{t \in T(\mathcal{F})} p_i(t)$ and $\sum_{t \in T(\mathcal{F})} p_i(t)|t|$ have to be absolutely convergent)

Normalization of the Model as a Generative Model Strongly Consistent Model Unranked Trees

Adapting the Framework to Unranked Trees

F. Denis, E. Gilbert, A. Habrard, F. Ouardi and M. Tommasi Representations for Rational Stochastic Tree Languages

Conclusion: Learning RSTL from *i.i.d.* samples

- DEES may output irrelevant representations.
- Our contributions:
- Existence and construction of a normalized representation.
- Algorithm for generating trees from the distribution.
- Strong consistency.
- Application to unranked trees.
- ⇒ When the models do not define stochastic languages, a distribution can be extracted and controlled if ρ(A) < 1.
- \Rightarrow A prototype software is being developed (Piccata).

イロン 不同と 不同と 不同と