Relevant Representations for the Inference of Rational Stochastic Tree Languages

François Denis¹ Edouard Gilbert² Amaury Habrard¹
Faïssal Quardi¹ Marc Tommasi²

¹Laboratoire d'Informatique Fondamentale de Marseille (LIF) CNRS, Aix-Marseille Université, France

²Laboratoire d'Informatique Fondamentale de Lille (L.I.F.L.), INRIA and É.N.S. Cachan, France

ICGI 2008

Outline

- 1 The Basic Problem
- 2 A Canonical Linear Representation for Rational Tree Series
- 3 Contributions
 - Normalization of the Model as a Generative Model
 - Strongly Consistent Model
 - Unranked Trees

Outline

- The Basic Problem
- 2 A Canonical Linear Representation for Rational Tree Series
- 3 Contributions
 - Normalization of the Model as a Generative Model
 - Strongly Consistent Model
 - Unranked Trees

Trees

 $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_1 \cup \cdots \cup \mathcal{F}_p$: a ranked alphabet

 \mathcal{F}_m : function symbols of arity m.

 $T(\mathcal{F})$: all the *trees* constructed from \mathcal{F} .

Example:

$$\mathcal{F} = \{ f(\cdot, \cdot), a \} ; f(a, f(a, a)) \in \mathcal{T}(\mathcal{F}).$$

Stochastic Tree Languages

Stochastic tree language: Probability distribution over $T(\mathcal{F})$

$$p: T(\mathcal{F}) \to \mathbb{R}$$

- for any $t \in T(\mathcal{F})$, $0 \le p(t) \le 1$ and
- $\sum_{t\in T(\mathcal{F})} p(t) = 1$.

Formal power tree series over $T(\mathcal{F})$

$$r: T(\mathcal{F}) \to \mathbb{R}$$
.

Notation: $\mathbb{R}\langle\langle T(\mathcal{F})\rangle\rangle$ (vector space).

A Basic Problem in Probabilistic Grammatical Inference

The Problem

- Data $t_1, \ldots, t_n \in \mathcal{T}(\mathcal{F})$ independently drawn according to a fixed unknown stochastic tree language p.
- Goal Infer an estimate of *p* in some class of probabilistic models.

Probabilistic models

- Probabilistic tree automata
- Linear representations of rational tree series

Probabilistic Tree Automata

A distribution over $T(\mathcal{F})$ according to a PA with one state

$$\mathcal{A}_{\alpha}: \ \Delta_{\alpha} = \{q \overset{\alpha}{\to} a, \ q \overset{1-\alpha}{\to} f(q,q)\}, \ \tau(q) = 1, \ 0 \le \alpha \le 1$$

$$p_{\alpha}(f(a,f(a,a))) = \alpha^{3}(1-\alpha)^{2}$$

Less simple than in the word case

- p_{α} is a stochastic language iff $\alpha \geq 1/2$.
- Is it decidable whether a PA defines a stochastic language?
- The average tree size: $1/(2\alpha 1)$. Unbounded if $\alpha = 1/2$.
- It is polynomially decidable whether a PA defines a stochastic language with bounded average size.

Linear Representations of Rational Tree Languages

A series $r \in \mathbb{R}\langle\langle T(\mathcal{F})\rangle\rangle$ is rational iff there exists a triple (V, μ, λ) :

- V is a finite dimensional vector space over \mathbb{R} ,
- μ maps any $f \in \mathcal{F}_p$ to a p-linear mapping $\mu(f) \in \mathcal{L}(V^p; V)$,
- λ is a linear form $V \to \mathbb{R}$,
- $r(t) = \lambda \mu(t)$, where $\mu(f(t_1, \ldots, t_p)) = \mu(f)(\mu(t_1), \ldots, \mu(t_p))$.

Example

- $V = \mathbb{R}$ and let $e_1 \neq 0$ a basis of \mathbb{R} ,
- $\mu(a) = \alpha e_1$, $\mu(f)(e_1, e_1) = (1 \alpha)e_1$,
- $\lambda(e_1) = 1$.

$$\lambda\mu(f(a, f(a, a))) = \alpha^3(1 - \alpha)^2$$

Rational Stochastic Tree Languages

Stochastic languages

A rational stochastic tree language (RSTL) is a stochastic language that has a linear representation.

- Every stochastic language computed by a probabilistic automaton is rational.
- Some RSTL cannot be computed by a probabilistic automaton.
- It is undecidable whether a linear representation represents a stochastic language.
- A RSTL can be equivalently represented by a weighted tree automaton, minimal in the number of states (vector space).

Outline

- The Basic Problem
- 2 A Canonical Linear Representation for Rational Tree Series
- 3 Contributions
 - Normalization of the Model as a Generative Model
 - Strongly Consistent Model
 - Unranked Trees

Word Languages: The Notion of Residual Languages

Languages: $L \subseteq \Sigma^*, u \in \Sigma^*$

$$u^{-1}L = \{v \in \Sigma^* | uv \in L\}$$

Series: $r \in \mathbb{R}\langle\langle T(\mathcal{F})\rangle\rangle, u \in \Sigma^*$

$$ur(v) = r(uv)$$

Residual language is a key notion for inference because:

- residual languages are intrinsic components
- they are observable on samples
- they yield canonical representations.

Contexts'

\$: a zero arity function symbol not in \mathcal{F}_0 .

A *context* is an element of $T(\mathcal{F} \cup \{\$\})$ s.t. \$ appears exactly once.

 $C(\mathcal{F})$: all contexts over \mathcal{F} .

c[t]: the tree obtained by substituting \$ by t.

An Algebraic Characterization of Rational Series

Contexts operate on tree series

Let
$$c \in C(\mathcal{F})$$
. Define $\dot{c} : \mathbb{R}\langle\langle T(\mathcal{F}) \rangle\rangle \to \mathbb{R}\langle\langle T(\mathcal{F}) \rangle\rangle$ by

$$\dot{c}r(t)=r(c[t]).$$

Example

$$c = f(a, \$), t = f(a, a), \dot{c}r(t) = r(f(a, f(a, a))).$$

Let
$$r \in T(\mathcal{F})$$
, consider $W_r = [\{\dot{c}r | c \in C(\mathcal{F})\}] \subseteq \mathbb{R}\langle\langle T(\mathcal{F})\rangle\rangle$

the vector subspace of $\mathbb{R}\langle\langle T(\mathcal{F})\rangle\rangle$ spanned by the series $\dot{c}r$.

Theorem: r is rational iff the dimension of W_r is finite.

$$W_r = [\{\dot{c}r|c \in C(\mathcal{F})\}]$$
; W_r^* dual space of W_r

ullet No natural linear representation of r on W_r

$$W_r = [\{\dot{c}r|c \in C(\mathcal{F})\}]$$
; W_r^* dual space of W_r

- No natural linear representation of r on W_r
- $T(\mathcal{F})$ is naturally embedded in W_r^* :

$$t \to \overline{t} \text{ s.t. } \overline{t}(\dot{c}r) = r(c[t])$$

$$W_r = [\{\dot{c}r|c \in C(\mathcal{F})\}]$$
; W_r^* dual space of W_r

- No natural linear representation of r on W_r
- $T(\mathcal{F})$ is naturally embedded in W_r^* :

$$t \to \overline{t} \text{ s.t. } \overline{t}(\dot{c}r) = r(c[t])$$

 $ullet \{ \overline{t} | t \in T(\mathcal{F}) \}$ spans W_r^*

$$W_r = [\{\dot{c}r|c \in C(\mathcal{F})\}]$$
; W_r^* dual space of W_r

- No natural linear representation of r on W_r
- $T(\mathcal{F})$ is naturally embedded in W_r^* :

$$t \to \overline{t} \text{ s.t. } \overline{t}(\dot{c}r) = r(c[t])$$

- $ullet \{ \overline{t} | t \in \mathcal{T}(\mathcal{F}) \}$ spans W_r^*
- the canonical linear representation of r: (W_r^*, μ, λ) where $\mu(t) = \overline{t}$ and $\lambda = r$ $(W_r^{**} = W_r)$

$$\mathcal{F} = \{f(,),a\}, au(q) = 1, p_lpha: q \stackrel{lpha}{
ightarrow} a, q \stackrel{1-lpha}{
ightarrow} f(q,q)$$

$$\mathcal{F} = \{f(,),a\}, au(q) = 1, p_{lpha}: q \stackrel{lpha}{
ightarrow} a, q \stackrel{1-lpha}{
ightarrow} f(q,q)$$

Let
$$p = 2p_{2/3} - p_{3/4}$$
: $\sum_{t} p(t) = 1$ and $\forall t, p(t) \ge 0$.

Let
$$p = 2p_{2/3} - p_{3/4}$$
: $\sum_{t} p(t) = 1$ and $\forall t, p(t) \ge 0$.

$$p(a) = \frac{7}{12}, p(f(a, a)) = \frac{269}{1728}, p(f(a, f(a, a))) = p(f(f(a, a), a)) = \frac{9823}{248832}, \dots$$

Let
$$p = 2p_{2/3} - p_{3/4}$$
: $\sum_t p(t) = 1$ and $\forall t, p(t) \ge 0$.

$$p(a) = \frac{7}{12}, p(f(a,a)) = \frac{269}{1728}, p(f(a,f(a,a))) = p(f(f(a,a),a)) = \frac{9823}{248832}, \dots$$

Oracle: Is $\overline{a} = 0$? i.e. for every context c, p(c[a]) = 0?

Let
$$p = 2p_{2/3} - p_{3/4}$$
: $\sum_t p(t) = 1$ and $\forall t, p(t) \ge 0$.

$$p(a) = \frac{7}{12}, p(f(a,a)) = \frac{269}{1728}, p(f(a,f(a,a))) = p(f(f(a,a),a)) = \frac{9823}{248832}, \dots$$

Oracle: Is $\bar{a} = 0$? i.e. for every context c, p(c[a]) = 0?

Answer: NO, consider c = \$.

Let
$$B = \{\overline{a}\}.$$

Let
$$p = 2p_{2/3} - p_{3/4}$$
: $\sum_t p(t) = 1$ and $\forall t, p(t) \ge 0$.

$$p(a) = \frac{7}{12}, p(f(a,a)) = \frac{269}{1728}, p(f(a,f(a,a))) = p(f(f(a,a),a)) = \frac{9823}{248832}, \dots$$

Oracle: Is $\overline{f(a,a)}$ colinear to \overline{a} ? i.e. $\exists \alpha$, for every context c, $p(c[f(a,a)]) = \alpha p(c[a])$?

Let
$$B = \{\overline{a}\}.$$

Let
$$p = 2p_{2/3} - p_{3/4}$$
: $\sum_{t} p(t) = 1$ and $\forall t, p(t) \ge 0$.

$$p(a) = \frac{7}{12}, p(f(a, a)) = \frac{269}{1728}, p(f(a, f(a, a))) = p(f(f(a, a), a)) = \frac{9823}{248832}, \dots$$

Oracle: Is f(a, a) colinear to \overline{a} ? i.e. $\exists \alpha$, for every context c, $p(c[f(a, a)]) = \alpha p(c[a])$?

Answer: NO, consider $c_1 = \$$ and $c_2 = f(a,\$)$.

Let
$$B = {\overline{a}, \overline{f(a,a)}}.$$

Let
$$p = 2p_{2/3} - p_{3/4}$$
: $\sum_t p(t) = 1$ and $\forall t, p(t) \ge 0$.

$$p(a) = \frac{7}{12}, p(f(a, a)) = \frac{269}{1728}, p(f(a, f(a, a))) = p(f(f(a, a), a)) = \frac{9823}{248832}, \dots$$

Oracle: Is $\overline{f(a, f(a, a))}$ colinear to \overline{a} , $\overline{f(a, a)}$?

Let
$$B = \{\overline{a}, \overline{f(a,a)}\}.$$

Let
$$p = 2p_{2/3} - p_{3/4}$$
: $\sum_{t} p(t) = 1$ and $\forall t, p(t) \ge 0$.

$$p(a) = \frac{7}{12}, p(f(a, a)) = \frac{269}{1728}, p(f(a, f(a, a))) = p(f(f(a, a), a)) = \frac{9823}{248832}, \dots$$

Oracle: Is $\overline{f(a, f(a, a))}$ colinear to $\overline{a}, \overline{f(a, a)}$?

Answer: YES.

$$\overline{f(a, f(a, a))} = \frac{-54}{2^4 \times 3^4} \overline{a} + \frac{59}{2^4 \times 3^2} \overline{f(a, a)}.$$

Let
$$B = \{\overline{a}, \overline{f(a,a)}\}.$$

Let
$$p = 2p_{2/3} - p_{3/4}$$
: $\sum_t p(t) = 1$ and $\forall t, p(t) \ge 0$.

$$p(a) = \frac{7}{12}, p(f(a, a)) = \frac{269}{1728}, p(f(a, f(a, a))) = p(f(f(a, a), a)) = \frac{9823}{248832}, \dots$$

Oracle: Is $\overline{f(f(a,a),a)}$ colinear to $\overline{a},\overline{f(a,a)}$?

Let
$$B = \{\overline{a}, \overline{f(a,a)}\}.$$

Let
$$p = 2p_{2/3} - p_{3/4}$$
: $\sum_{t} p(t) = 1$ and $\forall t, p(t) \ge 0$.

$$p(a) = \frac{7}{12}, p(f(a, a)) = \frac{269}{1728}, p(f(a, f(a, a))) = p(f(f(a, a), a)) = \frac{9823}{248832}, \dots$$

Oracle: Is $\overline{f(f(a,a),a)}$ colinear to $\overline{a}, \overline{f(a,a)}$?

Answer: YES,

$$\overline{f(a, f(a, a))} = \frac{-54}{2^4 \times 3^4} \overline{a} + \frac{59}{2^4 \times 3^2} \overline{f(a, a)}.$$

Let
$$B = \{\overline{a}, \overline{f(a,a)}\}.$$

Let
$$p = 2p_{2/3} - p_{3/4}$$
: $\sum_t p(t) = 1$ and $\forall t, p(t) \ge 0$.

$$p(a) = \frac{7}{12}, p(f(a, a)) = \frac{269}{1728}, p(f(a, f(a, a))) = p(f(f(a, a), a)) = \frac{9823}{248832}, \dots$$

Oracle: Is $\overline{f(f(a,a),f(a,a))}$ colinear to $\overline{a},\overline{f(a,a)}$?

Let
$$B = \{\overline{a}, \overline{f(a,a)}\}.$$

Let
$$p = 2p_{2/3} - p_{3/4}$$
: $\sum_{t} p(t) = 1$ and $\forall t, p(t) \ge 0$.

$$p(a) = \frac{7}{12}, p(f(a, a)) = \frac{269}{1728}, p(f(a, f(a, a))) = p(f(f(a, a), a)) = \frac{9823}{248832}, \dots$$

Oracle: Is $\overline{f(f(a,a),f(a,a))}$ colinear to $\overline{a},\overline{f(a,a)}$?

Answer: YES,

$$\overline{f(f(a,a),f(a,a))} = \frac{-3186}{2^8 \times 3^6} \overline{a} + \frac{2617}{2^8 \times 3^4} \overline{f(a,a)}.$$

Let
$$B = \{\overline{a}, \overline{f(a,a)}\}.$$

$$p = 2p_{2/3} - p_{3/4}$$

$$B = \{\overline{a}, \overline{f(a, a)}\}.$$

$$\mu(a) = \overline{a}$$

$$\mu(f)(\overline{a}, \overline{a}) = \overline{f(a, a)}$$

$$\mu(f)(\overline{a}, \overline{f(a, a)}) = \frac{-54}{2^4 \times 3^4} \overline{a} + \frac{59}{2^4 \times 3^2} \overline{f(a, a)}$$

$$\mu(f)(\overline{f(a, a)}, \overline{a}) = \frac{-54}{2^4 \times 3^4} \overline{a} + \frac{59}{2^4 \times 3^2} \overline{f(a, a)}$$

$$\mu(f)(\overline{f(a, a)}, \overline{f(a, a)}) = \frac{-3186}{2^8 \times 3^6} \overline{a} + \frac{2617}{2^8 \times 3^4} \overline{f(a, a)}$$

$$\lambda(\overline{a}) = p(a) = \frac{7}{12}; \lambda(\overline{f(a,a)}) = p(f(a,a)) = \frac{269}{1728}$$

Algorithm DEES; Independence Test

S a finite sample i.i.d. from p; B current basis; s vector candidate

$$\forall \alpha_t \in \mathbb{R}, \overline{s} \neq \sum_{t \in B} \alpha_t \overline{t}$$

 \simeq

$$\bigwedge_{c:\exists t} \bigwedge_{c[t] \in S} \left\{ |p_S(c[s]) - \sum_{t \in B} \alpha_t p_S(c[t])| \leq \epsilon \right\} \text{ has no solution}.$$

Take $\epsilon = |S|^{-\gamma}$ where $\gamma \in]0, 1/2[$ (VC bounds).

Properties of DEES

Theorem [F. Denis and A. Habrard, ALT'07]

DEES identifies the correct basis in the limit with probability one and the parameters converge to the correct ones in $O(|S|^{-1/2})$.

But ...

- In the model output, the states may not define stochastic languages.
- The parameters are not normalized.
- Before convergence, the model output may not define a stochastic language.

Outline

- 1 The Basic Problem
- 2 A Canonical Linear Representation for Rational Tree Series
- 3 Contributions
 - Normalization of the Model as a Generative Model
 - Strongly Consistent Model
 - Unranked Trees

The Normalization of the Model

$$\begin{aligned} q &\to q_0, 7/12 + q_1, 269/1728 \\ q_0 &\to a, 1 + f(q_0, q_1), \frac{-54}{2^4 3^4} + f(q_1, q_0), \frac{-54}{2^4 3^4} + f(q_1, q_1), \frac{-3186}{2^8 3^6} \\ q_1 &\to f(q_0, q_0), 1 + f(q_0, q_1), \frac{59}{2^4 3^2} + f(q_1, q_0), \frac{59}{2^4 3^2} + f(q_1, q_1), \frac{2617}{2^8 3^4} \end{aligned}$$

The Normalization of the Model

$$\begin{split} q &\to q_0, 7/12 + q_1, 269/1728 \\ q_0 &\to a, 1 + f(q_0, q_1), \frac{-54}{2^4 3^4} + f(q_1, q_0), \frac{-54}{2^4 3^4} + f(q_1, q_1), \frac{-3186}{2^8 3^6} \\ q_1 &\to f(q_0, q_0), 1 + f(q_0, q_1), \frac{59}{2^4 3^2} + f(q_1, q_0), \frac{59}{2^4 3^2} + f(q_1, q_1), \frac{2617}{2^8 3^4} \end{split}$$

Theorem

For any rational stochastic language, there exists a normalized representation with a basis chosen to ensure that:

- Each state defines a stochastic language.
- The weights of the transitions are normalized.

After Renormalization

- ∀ state lhs: Sum of the transition weights is one.
- \forall pair (state-lhs,symbol): Sum of the transition weights ≥ 0 .

$$egin{aligned} q &
ightarrow q_0, 1 \ q_0 &
ightarrow a, rac{7}{12} + f(q_0, q_0), rac{-269}{50} + f(q_0, q_1), rac{259}{50} + f(q_1, q_0), rac{259}{50}, \ &
ightarrow f(q_1, q_1), rac{-1369}{300} \ q_1 &
ightarrow a, rac{269}{444} + f(q_0, q_0), rac{-3024}{925} + f(q_0, q_1), rac{2664}{925} + f(q_1, q_0), rac{2664}{925} \ &
ightarrow f(q_1, q_1), rac{-23273}{11100} \end{aligned}$$

- Efficient propagative method for computing the normalization.
- ullet Still negative weights o specific generation algorithm.

Notion of Strong Consistency

Rational Stochastic Tree Language Strongly Consistent

Bounded average tree size: $\sum_t p(t)|t| < \infty$

Theorem

For a strongly consistent RSTL, the spectral radius of the "expectation matrix" A taken from the normalized representation is strictly less than 1 ($\rho(A) < 1$).

Errata: Some hypotheses are missing in Proposition 1 see http://hal.archives-ouvertes.fr/hal-00293511/en (the series $\sum_{t \in T(\mathcal{F})} p_i(t)$ and $\sum_{t \in T(\mathcal{F})} p_i(t) |t|$ have to be absolutely convergent)

Adapting the Framework to Unranked Trees

⇔ Bijection

⇔ Equivalence

All the inference results apply: Convert the data and use DEES

Conclusion: Learning RSTL from i.i.d. samples

- DEES may output irrelevant representations.
- Our contributions:
- Existence and construction of a normalized representation.
- Algorithm for generating trees from the distribution.
- Strong consistency.
- Application to unranked trees.
- \Rightarrow When the models do not define stochastic languages, a distribution can be extracted and controlled if $\rho(A) < 1$.
- ⇒ A prototype software is being developed (Piccata).

