
Towards Feasible PAC-Learning of Probabilistic
Deterministic Finite Automata

Jorge Castro Ricard Gavaldà

LARCA Research Group, Departament LSI
Univ. Politècnica de Catalunya, Barcelona

ICGI’08, september 2008

J. Castro, R. Gavaldà (UPC) PAC-Learning PDFA ICGI’08, september 2008 1 / 19

Introduction

PFA and PDFA

Finite alphabet, finite set of states
PFA, Probabilistic Finite State Automata:
Each state has a probability distribution on transitions out it
PDFA, Probablistic Deterministic Finite Automata:
One transition per pair (state,letter)

Every PFA M defines a probability distribution on strings D(M),
a.k.a. a stochastic language

J. Castro, R. Gavaldà (UPC) PAC-Learning PDFA ICGI’08, september 2008 2 / 19

Introduction

Learning PDFA

Many algorithms to learn PDFA, either heuristically or provably in
the limit
[Clark-Thollard 04] An algorithm that provably learns in a PAC-like
framework from polynomial-size samples
Followup papers, slightly different frameworks:

[Palmer-Goldberg 05, Guttman et al 05, G-Keller-Pineau-Precup 06]

Sample sizes are polynomial, but huge for practical parameters

J. Castro, R. Gavaldà (UPC) PAC-Learning PDFA ICGI’08, september 2008 3 / 19

Introduction

Our contribution

A variation of the Clark-Thollard algorithm for learning PDFA
that has formal guarantees of performance: PAC-learning w.r.t.
KL-divergence
does not require unknown parameters as input

Potentially much more efficient:
Finer notion of state distinguishability
More efficient test to decide state merging/splitting
Adapts to complexity of target: faster on simpler problems

Promising results on simple dynamical systems, and on a large
weblog dataset

J. Castro, R. Gavaldà (UPC) PAC-Learning PDFA ICGI’08, september 2008 4 / 19

Definitions & previous results

PAC-learning PDFA

Let d be a measure of divergence among distributions
Popular choice for d : Kullback-Leibler divergence

Definition
An algorithm PAC-learns PDFA w.r.t. d if for every target PDFA M,
every ε, every δ it produces a PDFA M ′ such that

Pr[d(D(M),D(M ′)) ≥ ε] ≤ δ.

in time poly(size(M),1/ε,1/δ).

J. Castro, R. Gavaldà (UPC) PAC-Learning PDFA ICGI’08, september 2008 5 / 19

Definitions & previous results

Previous Results

PAC-learning PDFA this way may be impossible [Kearns et al 95]

[Ron et al 96] Learning becomes possible by
considering acyclic PDFA
introducing a distinguishability parameter µ
= bound on how similar two states can be

[Clark-Thollard 04]
Extends to cyclic PDFA considering parameter L
= bound on expected length of generated strings.
Provably PAC-learns w.r.t. Kullback-Leibler divergence

J. Castro, R. Gavaldà (UPC) PAC-Learning PDFA ICGI’08, september 2008 6 / 19

Definitions & previous results

The C&T algorithm: promise and drawbacks

It provably PAC-learns with sample size

poly(|Σ|,n, ln 1
δ
,
1
ε
,

1
µ
,L)

But

Requires full sample up-front: Always worst-case sample size
Polynomial is huge: for n = 3, ε = δ = µ = 0.1→ m > 1024

Parameters n, L, µ are user-entered – upper bounds, guesswork

J. Castro, R. Gavaldà (UPC) PAC-Learning PDFA ICGI’08, september 2008 7 / 19

Definitions & previous results

Distinguishability

For a state q, Dq = distribution on strings generated starting at q

L∞-distinguishability

L∞-dist(q,q′) = max
x∈Σ?

|Dq(x)− Dq′(x)|

L∞-dist(M) = min
q,q′

L∞-dist(q,q′)

J. Castro, R. Gavaldà (UPC) PAC-Learning PDFA ICGI’08, september 2008 8 / 19

Definitions & previous results

Distinguishability

For a state q, Dq = distribution on strings generated starting at q

L∞-distinguishability

L∞-dist(q,q′) = max
x∈Σ?

|Dq(x)− Dq′(x)|

L∞-dist(M) = min
q,q′

L∞-dist(q,q′)

J. Castro, R. Gavaldà (UPC) PAC-Learning PDFA ICGI’08, september 2008 8 / 19

Our contributions

Prefix L∞-distinguishability

prefL∞-distinguishability

prefL∞-dist(q,q′) = max
x∈Σ?

|Dq(xΣ?)− Dq′(xΣ?)|

prefL∞-dist(M) = min
q,q′

max{L∞-dist(q,q′),prefL∞-dist(q,q′)}

Obviously for every M

prefL∞-dist(M) ≥ L∞-dist(M)

J. Castro, R. Gavaldà (UPC) PAC-Learning PDFA ICGI’08, september 2008 9 / 19

Our contributions

Prefix L∞-distinguishability

prefL∞-distinguishability

prefL∞-dist(q,q′) = max
x∈Σ?

|Dq(xΣ?)− Dq′(xΣ?)|

prefL∞-dist(M) = min
q,q′

max{L∞-dist(q,q′),prefL∞-dist(q,q′)}

Obviously for every M

prefL∞-dist(M) ≥ L∞-dist(M)

J. Castro, R. Gavaldà (UPC) PAC-Learning PDFA ICGI’08, september 2008 9 / 19

Our contributions

Data Structures

Algorithm keeps a graph with “safe” and “candidate” states
Safe state s: represents state where string s ends
Invariant: Graph of safe states isomorphic to a subgraph of target

Candidate state: pair (s, σ) where next(s, σ) still unclear
Keep a multiset B(s,σ), representing D(s,σ), for each candidate
(s, σ)

Eventually, all candidate states are promoted to safe states or
merged with existing safe states

J. Castro, R. Gavaldà (UPC) PAC-Learning PDFA ICGI’08, september 2008 10 / 19

Our contributions

The Clark-Thollard algorithm

1. input |Σ|, δ, ε, µ, L
// Assumption:
// target is µ ≥ distinguishability, n ≥ #states, L ≥expected length
2. compute m = poly(|Σ|,n, ln 1

δ ,
1
ε ,

1
µ ,L)

3. ask for sample S of size m
4. work on S, again using n, ε, µ, L
5. produce pdfa

Theorem
PAC-learning w.r.t KL-divergence occurs

J. Castro, R. Gavaldà (UPC) PAC-Learning PDFA ICGI’08, september 2008 11 / 19

Our contributions

The Clark-Thollard algorithm

1. input |Σ|, δ, ε, µ, L
// Assumption:
// target is µ ≥ distinguishability, n ≥ #states, L ≥expected length
2. compute m = poly(|Σ|,n, ln 1

δ ,
1
ε ,

1
µ ,L)

3. ask for sample S of size m
4. work on S, again using n, ε, µ, L
5. produce pdfa

Theorem
PAC-learning w.r.t KL-divergence occurs

J. Castro, R. Gavaldà (UPC) PAC-Learning PDFA ICGI’08, september 2008 11 / 19

Our contributions

Our algorithm

1. input |Σ|, δ, available sample S
2. work on S
3. produce pdfa

Theorem

If |S| ≥ poly(|Σ|,n, ln 1
δ ,

1
ε ,

1
µ ,L), then

PAC-learning w.r.t KL-divergence occurs

(n =#target states,
µ = prefL∞-dist(target),
L =expected-length(target))

J. Castro, R. Gavaldà (UPC) PAC-Learning PDFA ICGI’08, september 2008 12 / 19

Our contributions

Our algorithm

1. input |Σ|, δ, available sample S
2. work on S
3. produce pdfa

Theorem

If |S| ≥ poly(|Σ|,n, ln 1
δ ,

1
ε ,

1
µ ,L), then

PAC-learning w.r.t KL-divergence occurs

(n =#target states,
µ = prefL∞-dist(target),
L =expected-length(target))

J. Castro, R. Gavaldà (UPC) PAC-Learning PDFA ICGI’08, september 2008 12 / 19

Our contributions

Our algorithm, more precisely

1. input |Σ|, δ, available sample
2. define initial safe state, labelled with empty string
3. define candidate states out of initial state, one per letter
4. while there are candidate states left do
5. process the whole sample, growing sets B(s,σ)

6. choose candidate state (s, σ) with largest set B(s,σ)

7. either merge or promote (s, σ)
8. endwhile
9. build PDFA from current graph
10. set transition probabilities & smooth out

J. Castro, R. Gavaldà (UPC) PAC-Learning PDFA ICGI’08, september 2008 13 / 19

Our contributions

Criterion for merging/promoting

1. Let (s, σ) be chosen candidate state
2. foreach safe s′ do
3. run statistical test for distinct distributions of B(s,σ) and Bs′

4. if all tests passed
5. // w.h.p. (s, σ) is distinct from all existing states
6. promote (s, σ) as a new safe state
6. else
7. // some test failed: (s, σ) similar to an existing safe state s′

8. identify (merge) (s, σ) with s′

9. endif

Independent of µ!
Wrong decisions if sample is too small!
Crucial: Executed only after the whole sample is processed

J. Castro, R. Gavaldà (UPC) PAC-Learning PDFA ICGI’08, september 2008 14 / 19

Our contributions

Criterion for merging/promoting

1. Let (s, σ) be chosen candidate state
2. foreach safe s′ do
3. run statistical test for distinct distributions of B(s,σ) and Bs′

4. if all tests passed
5. // w.h.p. (s, σ) is distinct from all existing states
6. promote (s, σ) as a new safe state
6. else
7. // some test failed: (s, σ) similar to an existing safe state s′

8. identify (merge) (s, σ) with s′

9. endif

Independent of µ!
Wrong decisions if sample is too small!
Crucial: Executed only after the whole sample is processed

J. Castro, R. Gavaldà (UPC) PAC-Learning PDFA ICGI’08, september 2008 14 / 19

Experiments

Simple dynamical processes

From [G et al, ecml06], another implementation of Clark-Thollard:

HMM generating {abb,aaa,bba}
Cheese maze: state = position in maze
Implementation described there required ≥ 105 samples to
identify structure

J. Castro, R. Gavaldà (UPC) PAC-Learning PDFA ICGI’08, september 2008 15 / 19

Experiments

Simple dynamical processes

Reber grammar [Carrasco-Oncina 99]:

J. Castro, R. Gavaldà (UPC) PAC-Learning PDFA ICGI’08, september 2008 16 / 19

Experiments

Simple dynamical processes

Three 10-state machines, alphabet size 2 or 3
Graph is correctly identified by our algorithm with 200-500
samples
Comparable sample size reported for heuristic (non
PAC-guaranteed) methods

J. Castro, R. Gavaldà (UPC) PAC-Learning PDFA ICGI’08, september 2008 17 / 19

Experiments

A large dataset

Log from an ecommerce website selling flights, hotels, car rental,
show tickets. . .
91 distinct “pages”, 120,000 user sessions, average length 12
clicks
definitely NOT generated by a PDFA

Our algorithm produces a nontrivial 50-60-state PDFA
L1 distance to dataset ≈ 0.44 – baseline is ≈ 0.39

J. Castro, R. Gavaldà (UPC) PAC-Learning PDFA ICGI’08, september 2008 18 / 19

Experiments

A large dataset

Log from an ecommerce website selling flights, hotels, car rental,
show tickets. . .
91 distinct “pages”, 120,000 user sessions, average length 12
clicks
definitely NOT generated by a PDFA

Our algorithm produces a nontrivial 50-60-state PDFA
L1 distance to dataset ≈ 0.44 – baseline is ≈ 0.39

J. Castro, R. Gavaldà (UPC) PAC-Learning PDFA ICGI’08, september 2008 18 / 19

Conclusions

Conclusions

An algorithm for learning PDFA with PAC guarantees
samples order of 200− 1000 where theory predicts 1020

Future work:

Extend to distances other than L∞
Other notions of distinguishability?
[Denis et al 06] PAC-learn full class of PNFA. Practical?

J. Castro, R. Gavaldà (UPC) PAC-Learning PDFA ICGI’08, september 2008 19 / 19

Conclusions

Conclusions

An algorithm for learning PDFA with PAC guarantees
samples order of 200− 1000 where theory predicts 1020

Future work:

Extend to distances other than L∞
Other notions of distinguishability?
[Denis et al 06] PAC-learn full class of PNFA. Practical?

J. Castro, R. Gavaldà (UPC) PAC-Learning PDFA ICGI’08, september 2008 19 / 19

	Introduction
	Definitions & previous results
	Our contributions
	Experiments
	Conclusions

