
Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Learning Left-to-Right and Right-to-Left Iterative
Languages

Jeffrey Heinz
heinz@udel.edu

University of Delaware

St. Malo
September 24, 2008

J. Heinz (1) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

LRI and RLI Languages

1 previously unnoticed infinite subclasses of the regular languages

2 identifiable in the limit from positive data

3 essentially the classes obtainable by merging final and start states
in prefix and suffix trees, respectively

J. Heinz (2) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

LRI and RLI Languages

1 previously unnoticed infinite subclasses of the regular languages

2 identifiable in the limit from positive data

3 essentially the classes obtainable by merging final and start states
in prefix and suffix trees, respectively

J. Heinz (3) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

LRI and RLI Languages

1 previously unnoticed infinite subclasses of the regular languages

2 identifiable in the limit from positive data

3 essentially the classes obtainable by merging final and start states
in prefix and suffix trees, respectively

J. Heinz (4) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Why they are interesting

1 related algorthimically to the zero-reversible languages
(remove one line!) (Angluin 1982)

2 a step towards mapping out space of language classes obtainable
by Muggleton’s (1990) general state-merging IM1 algorithm

3 help reveal the algebraic structure underlying state-merging and
the reverse operator

4 related to a linguistic hypothesis: all phonotactic patterns are
neighborhood-distinct (Heinz 2007)

J. Heinz (5) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Why they are interesting

1 related algorthimically to the zero-reversible languages
(remove one line!) (Angluin 1982)

2 a step towards mapping out space of language classes obtainable
by Muggleton’s (1990) general state-merging IM1 algorithm

3 help reveal the algebraic structure underlying state-merging and
the reverse operator

4 related to a linguistic hypothesis: all phonotactic patterns are
neighborhood-distinct (Heinz 2007)

J. Heinz (6) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Why they are interesting

1 related algorthimically to the zero-reversible languages
(remove one line!) (Angluin 1982)

2 a step towards mapping out space of language classes obtainable
by Muggleton’s (1990) general state-merging IM1 algorithm

3 help reveal the algebraic structure underlying state-merging and
the reverse operator

4 related to a linguistic hypothesis: all phonotactic patterns are
neighborhood-distinct (Heinz 2007)

J. Heinz (7) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Why they are interesting

1 related algorthimically to the zero-reversible languages
(remove one line!) (Angluin 1982)

2 a step towards mapping out space of language classes obtainable
by Muggleton’s (1990) general state-merging IM1 algorithm

3 help reveal the algebraic structure underlying state-merging and
the reverse operator

4 related to a linguistic hypothesis: all phonotactic patterns are
neighborhood-distinct (Heinz 2007)

J. Heinz (8) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

What are phonotactic patterns?

Rules or constraints governingword well-formedness

Possible words of English:

{ slam, fist, blick, flump, . . . }

This set excludes:

{ sram, fizt, bnick, flumk, . . . }

J. Heinz (9) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

What are phonotactic patterns?

Rules or constraints governingword well-formedness

Possible words of English:

{ slam, fist, blick, flump, . . . }

This set excludes:

{ sram, fizt, bnick, flumk, . . . }

J. Heinz (10) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

What are phonotactic patterns?

Rules or constraints governingword well-formedness

Possible words of English:

{ slam, fist, blick, flump, . . . }

This set excludes:

{ sram, fizt, bnick, flumk, . . . }

J. Heinz (11) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Specific Sound Patterns

No Triple Consonant Clusters in Yokuts:
Includes { ab, abba, ababa, . . . }
Excludes { bbb, abbb, abbba, bbbba, . . . }

Symmetric Sibilant Harmony (Navajo):
Includes {sos, sotototos, . . .SoS, SotototoS . . . }
Excludes {soS, Sotos, sototoS, . . . }

Asymmetric Sibilant Harmony (Sarcee):
Includes {sos, sotototos, . . .SoS, SotototoS . . .Sos, Sotos, . . . }
Excludes {soS, sotoS, sototoS, . . . }

J. Heinz (12) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Specific Sound Patterns

No Triple Consonant Clusters in Yokuts:
Includes { ab, abba, ababa, . . . }
Excludes { bbb, abbb, abbba, bbbba, . . . }

Symmetric Sibilant Harmony (Navajo):
Includes {sos, sotototos, . . .SoS, SotototoS . . . }
Excludes {soS, Sotos, sototoS, . . . }

Asymmetric Sibilant Harmony (Sarcee):
Includes {sos, sotototos, . . .SoS, SotototoS . . .Sos, Sotos, . . . }
Excludes {soS, sotoS, sototoS, . . . }

J. Heinz (13) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Specific Sound Patterns

No Triple Consonant Clusters in Yokuts:
Includes { ab, abba, ababa, . . . }
Excludes { bbb, abbb, abbba, bbbba, . . . }

Symmetric Sibilant Harmony (Navajo):
Includes {sos, sotototos, . . .SoS, SotototoS . . . }
Excludes {soS, Sotos, sototoS, . . . }

Asymmetric Sibilant Harmony (Sarcee):
Includes {sos, sotototos, . . .SoS, SotototoS . . .Sos, Sotos, . . . }
Excludes {soS, sotoS, sototoS, . . . }

J. Heinz (14) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Specific Sound Patterns

No Triple Consonant Clusters in Yokuts:
Includes { ab, abba, ababa, . . . }
Excludes { bbb, abbb, abbba, bbbba, . . . }

Symmetric Sibilant Harmony (Navajo):
Includes {sos, sotototos, . . .SoS, SotototoS . . . }
Excludes {soS, Sotos, sototoS, . . . }

Asymmetric Sibilant Harmony (Sarcee):
Includes {sos, sotototos, . . .SoS, SotototoS . . .Sos, Sotos, . . . }
Excludes {soS, sotoS, sototoS, . . . }

J. Heinz (15) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Specific Sound Patterns

No Triple Consonant Clusters in Yokuts:
Includes { ab, abba, ababa, . . . }
Excludes { bbb, abbb, abbba, bbbba, . . . }

Symmetric Sibilant Harmony (Navajo):
Includes {sos, sotototos, . . .SoS, SotototoS . . . }
Excludes {soS, Sotos, sototoS, . . . }

Asymmetric Sibilant Harmony (Sarcee):
Includes {sos, sotototos, . . .SoS, SotototoS . . .Sos, Sotos, . . . }
Excludes {soS, sotoS, sototoS, . . . }

J. Heinz (16) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Specific Sound Patterns

No Triple Consonant Clusters in Yokuts:
Includes { ab, abba, ababa, . . . }
Excludes { bbb, abbb, abbba, bbbba, . . . }

Symmetric Sibilant Harmony (Navajo):
Includes {sos, sotototos, . . .SoS, SotototoS . . . }
Excludes {soS, Sotos, sototoS, . . . }

Asymmetric Sibilant Harmony (Sarcee):
Includes {sos, sotototos, . . .SoS, SotototoS . . .Sos, Sotos, . . . }
Excludes {soS, sotoS, sototoS, . . . }

J. Heinz (17) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Specific Sound Patterns

No Triple Consonant Clusters in Yokuts:
Includes { ab, abba, ababa, . . . }
Excludes { bbb, abbb, abbba, bbbba, . . . }

Symmetric Sibilant Harmony (Navajo):
Includes {sos, sotototos, . . .SoS, SotototoS . . . }
Excludes {soS, Sotos, sototoS, . . . }

Asymmetric Sibilant Harmony (Sarcee):
Includes {sos, sotototos, . . .SoS, SotototoS . . .Sos, Sotos, . . . }
Excludes {soS, sotoS, sototoS, . . . }

J. Heinz (18) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Specific Sound Patterns

No Triple Consonant Clusters in Yokuts:
Includes { ab, abba, ababa, . . . }
Excludes { bbb, abbb, abbba, bbbba, . . . }

Symmetric Sibilant Harmony (Navajo):
Includes {sos, sotototos, . . .SoS, SotototoS . . . }
Excludes {soS, Sotos, sototoS, . . . }

Asymmetric Sibilant Harmony (Sarcee):
Includes {sos, sotototos, . . .SoS, SotototoS . . .Sos, Sotos, . . . }
Excludes {soS, sotoS, sototoS, . . . }

J. Heinz (19) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Specific Sound Patterns

No Triple Consonant Clusters in Yokuts:
Includes { ab, abba, ababa, . . . }
Excludes { bbb, abbb, abbba, bbbba, . . . }

Symmetric Sibilant Harmony (Navajo):
Includes {sos, sotototos, . . .SoS, SotototoS . . . }
Excludes {soS, Sotos, sototoS, . . . }

Asymmetric Sibilant Harmony (Sarcee):
Includes {sos, sotototos, . . .SoS, SotototoS . . .Sos, Sotos, . . . }
Excludes {soS, sotoS, sototoS, . . . }

J. Heinz (20) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Language Patterns and the Chomsky Hierarchy

Finite Regular Context Free Context
Sensitive

Mildly
Sensitive
Context

J. Heinz (21) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Language Patterns and the Chomsky Hierarchy

Finite Regular Context Free Context
Sensitive

Mildly
Sensitive
Context

Embedding
English Nested

(Chomsky 1956)

Swiss German
Crossing Dependencies
(Schieber 1985)

Yoruba Copying
(Kobele 2006)

J. Heinz (22) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Language Patterns and the Chomsky Hierarchy

Finite Regular Context Free Context
Sensitive

Mildly
Sensitive
Context

Embedding
English Nested

(Chomsky 1956)

Swiss German
Crossing Dependencies
(Schieber 1985)

Yoruba Copying
(Kobele 2006)

(Kisseberth 1973)

Pintupi Stress
(Hansen and Hansen 1969)

Navajo Sibilant Harmony
(Sapir and Hojier 1967)

Yawelmani Yokuts
Consonant Clusters

J. Heinz (23) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

The Subregular Hierarchy

LTSS Locally Testable Non−Counting
(Locally Testable w/ order)

Regular

(McNaughton and Papert 1971, Pullum and Rogers 2007)

J. Heinz (24) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

The Subregular Hierarchy

Unbounded Stress

Locally Testable Non−Counting
(Locally Testable w/ order)

Symmetric Harmony

Adjacency restrictions

Asymmetric Harmony

Bounded Stress

RegularLTSS

(Greenberg 1978, Hansson 2001, Hayes 1995)

J. Heinz (25) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Grammatical Inference of Regular Languages is Theoretical
Phonology

The properties of learnable subclasses of the regular languages
are candidates as universal properties of sound patterns

E.g. Angluin 1982, Muggleton 1990, Fernau 2003, . . .

Which can be evaluated by comparing them to the
1 Linguists’ knowledge of the range of variation

E.g. Greenberg 1978, Hansson 2001, Hayes 1995, . . .

2 Psycholinguistic evidence about the state of infants’ knowledge
E.g. Juscyk et al. 1999, Mattys and Juscyk 2001, Saffran et al.
1996, Saffran and Thiessen 2003, . . .

J. Heinz (26) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Grammatical Inference of Regular Languages is Theoretical
Phonology

The properties of learnable subclasses of the regular languages
are candidates as universal properties of sound patterns

E.g. Angluin 1982, Muggleton 1990, Fernau 2003, . . .

Which can be evaluated by comparing them to the
1 Linguists’ knowledge of the range of variation

E.g. Greenberg 1978, Hansson 2001, Hayes 1995, . . .

2 Psycholinguistic evidence about the state of infants’ knowledge
E.g. Juscyk et al. 1999, Mattys and Juscyk 2001, Saffran et al.
1996, Saffran and Thiessen 2003, . . .

J. Heinz (27) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Grammatical Inference of Regular Languages is Theoretical
Phonology

The properties of learnable subclasses of the regular languages
are candidates as universal properties of sound patterns

E.g. Angluin 1982, Muggleton 1990, Fernau 2003, . . .

Which can be evaluated by comparing them to the
1 Linguists’ knowledge of the range of variation

E.g. Greenberg 1978, Hansson 2001, Hayes 1995, . . .

2 Psycholinguistic evidence about the state of infants’ knowledge
E.g. Juscyk et al. 1999, Mattys and Juscyk 2001, Saffran et al.
1996, Saffran and Thiessen 2003, . . .

J. Heinz (28) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Grammatical Inference of Regular Languages is Theoretical
Phonology

The properties of learnable subclasses of the regular languages
are candidates as universal properties of sound patterns

E.g. Angluin 1982, Muggleton 1990, Fernau 2003, . . .

Which can be evaluated by comparing them to the
1 Linguists’ knowledge of the range of variation

E.g. Greenberg 1978, Hansson 2001, Hayes 1995, . . .

2 Psycholinguistic evidence about the state of infants’ knowledge
E.g. Juscyk et al. 1999, Mattys and Juscyk 2001, Saffran et al.
1996, Saffran and Thiessen 2003, . . .

J. Heinz (29) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Grammatical Inference of Regular Languages is Theoretical
Phonology

The properties of learnable subclasses of the regular languages
are candidates as universal properties of sound patterns

E.g. Angluin 1982, Muggleton 1990, Fernau 2003, . . .

Which can be evaluated by comparing them to the
1 Linguists’ knowledge of the range of variation

E.g. Greenberg 1978, Hansson 2001, Hayes 1995, . . .

2 Psycholinguistic evidence about the state of infants’ knowledge
E.g. Juscyk et al. 1999, Mattys and Juscyk 2001, Saffran et al.
1996, Saffran and Thiessen 2003, . . .

J. Heinz (30) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Grammatical Inference of Regular Languages is Theoretical
Phonology

The properties of learnable subclasses of the regular languages
are candidates as universal properties of sound patterns

E.g. Angluin 1982, Muggleton 1990, Fernau 2003, . . .

Which can be evaluated by comparing them to the
1 Linguists’ knowledge of the range of variation

E.g. Greenberg 1978, Hansson 2001, Hayes 1995, . . .

2 Psycholinguistic evidence about the state of infants’ knowledge
E.g. Juscyk et al. 1999, Mattys and Juscyk 2001, Saffran et al.
1996, Saffran and Thiessen 2003, . . .

J. Heinz (31) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Grammatical Inference of Regular Languages is Theoretical
Phonology

The properties of learnable subclasses of the regular languages
are candidates as universal properties of sound patterns

E.g. Angluin 1982, Muggleton 1990, Fernau 2003, . . .

Which can be evaluated by comparing them to the
1 Linguists’ knowledge of the range of variation

E.g. Greenberg 1978, Hansson 2001, Hayes 1995, . . .

2 Psycholinguistic evidence about the state of infants’ knowledge
E.g. Juscyk et al. 1999, Mattys and Juscyk 2001, Saffran et al.
1996, Saffran and Thiessen 2003, . . .

J. Heinz (32) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

The Subregular Hierarchy

Unbounded Stress

Locally Testable Non−Counting
(Locally Testable w/ order)

Symmetric Harmony

Adjacency restrictions

Asymmetric Harmony

Bounded Stress

RegularLTSS

For small neighborhoods, they are all neighborhood-distinct.
3-LTSS⊂ 1-1 ND
precedence languages⊂ 1-1 ND
all but 2 attested stress patterns⊂ 1-1 NDJ. Heinz (33) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

The Subregular Hierarchy

Unbounded Stress

LTSS Locally Testable Non−Counting
(Locally Testable w/ order)

Symmetric Harmony

Adjacency restrictions

Asymmetric Harmony

Bounded Stress

Regular

neighborhood−distinct

For small neighborhoods, they are all neighborhood-distinct.
3-LTSS⊂ 1-1 ND
precedence languages⊂ 1-1 ND
all but 2 attested stress patterns⊂ 1-1 ND

(Heinz 2007)

J. Heinz (34) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

LRI: Language-theoretic Characterization

LRI languages are defined as the intersectionof two classes of
languages.

1 {L : wheneveru, v ∈ L, TL(u) = TL(v)}

2 {L1·L∗

2 : L1, L2 ∈ Lfin}

J. Heinz (35) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

LRI: Language-theoretic Characterization

LRI languages are defined as the intersectionof two classes of
languages.

1 {L : wheneveru, v ∈ L, TL(u) = TL(v)}

2 {L1·L∗

2 : L1, L2 ∈ Lfin}

J. Heinz (36) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

LRI: Language-theoretic Characterization

LRI languages are defined as the intersectionof two classes of
languages.

1 {L : wheneveru, v ∈ L, TL(u) = TL(v)}

2 {L1·L∗

2 : L1, L2 ∈ Lfin}

J. Heinz (37) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

LRI: Towards an Automata-theoretic Characterization

Theorem.

The class{L : wheneveru, v ∈ L, TL(u) = TL(v)} coincides with
those languages recognizable by finite-state automata which are
forward deterministic and have at most one final state.

J. Heinz (38) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

LRI: Towards an Automata-theoretic Characterization

Theorem.

The class{L : wheneveru, v ∈ L, TL(u) = TL(v)} coincides with
those languages recognizable by finite-state automata which are
forward deterministic and have at most one final state.

0

1a
2

b

b

c

3
a
c

b

J. Heinz (39) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

LRI: Towards an Automata-theoretic Characterization

Theorem.

The class{L : wheneveru, v ∈ L, TL(u) = TL(v)} coincides with
those languages recognizable by finite-state automata which are
forward deterministic and have at most one final state.

0

1a
2

b

b

c

3
a
c

b

These languages I call 1-final deterministic

J. Heinz (40) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

LRI: Automata-theoretic Characterization

Theorem.

A languageL is left-to-right iterative iff

1 The tail-canonical acceptorAT(L) is 1-final-deterministic, and

2 if L is infinite, then every loop inAT(L) passes through the final
state.

J. Heinz (41) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

LRI: Automata-theoretic Characterization

Theorem.

A languageL is left-to-right iterative iff

1 The tail-canonical acceptorAT(L) is 1-final-deterministic, and

2 if L is infinite, then every loop inAT(L) passes through the final
state.

0

1a
2

b

b

c

3
a
c

b

J. Heinz (42) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

LRI: Automata-theoretic Characterization

Theorem.

A languageL is left-to-right iterative iff

1 The tail-canonical acceptorAT(L) is 1-final-deterministic, and

2 if L is infinite, then every loop inAT(L) passes through the final
state.

0

1a
2

b

c

3
a
c

J. Heinz (43) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Consequences for Inference

1 Givenab, abcd, we can inferab(cd)∗ ⊆ L

⇒ Generally, givenu, uv∈ L, we inferuv∗ ⊆ L.

J. Heinz (44) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Consequences for Inference

1 Givenab, abcd, we can inferab(cd)∗ ⊆ L

⇒ Generally, givenu, uv∈ L, we inferuv∗ ⊆ L.

J. Heinz (45) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Consequences for Inference

1 Givenab, abcd, we can inferab(cd)∗ ⊆ L

⇒ Generally, givenu, uv∈ L, we inferuv∗ ⊆ L.

J. Heinz (46) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Consequences for Inference

1 Givenab, abcd, we can inferab(cd)∗ ⊆ L

⇒ Generally, givenu, uv∈ L, we inferuv∗ ⊆ L.

0 1
u

2
v

J. Heinz (47) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Consequences for Inference

1 Givenab, abcd, we can inferab(cd)∗ ⊆ L

⇒ Generally, givenu, uv∈ L, we inferuv∗ ⊆ L.

0 1-2
u

v

J. Heinz (48) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Learning LRI

φ(S) = PT(S)/πfinal

1 Merge final states in the prefix tree

2 Merge states to eliminate forward non-determinism

⇒ This last step is not required — it does not change the language
of the machine

J. Heinz (49) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Learning LRI

φ(S) = PT(S)/πfinal

1 Merge final states in the prefix tree

2 Merge states to eliminate forward non-determinism

⇒ This last step is not required — it does not change the language
of the machine

J. Heinz (50) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Learning LRI

φ(S) = PT(S)/πfinal

1 Merge final states in the prefix tree

2 Merge states to eliminate forward non-determinism

⇒ This last step is not required — it does not change the language
of the machine

J. Heinz (51) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Illustration of Learning LRI

Sample = { a, b, abcd, bbcb}

0

1a

5

b

2
b

3
c

4
d

6
b

7
c

8
b

J. Heinz (52) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Illustration of Learning LRI

Sample = { a, b, abcd, bbcb}

0 1-4-5-8
a
b

2
b

6

b

3

c

d

7c

b

J. Heinz (53) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Illustration of Learning LRI

Sample = { a, b, abcd, bbcb}

0 1-4-5-8
a
b

2-6
b 3c

7

c

d

b

J. Heinz (54) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Illustration of Learning LRI

Sample = { a, b, abcd, bbcb}

0 1-4-5-8
a
b

2-6
b

3-7

c

d

b

J. Heinz (55) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Illustration of Learning LRI

Sample = { a, b, abcd, bbcb}

0 1-4-5-8
a
b

2-6
b

3-7

c

d

b

The algorithm differs only from ZR (Angluin 1982) in that states
arenot merged to remove reverse non-determinism!

J. Heinz (56) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Learning Results for LRI

Theorem. EveryL ∈ LRI has a characterstic sample. Since
L = L1·L∗

2 whereL1, L2 ∈ Lfin, such a sample is

L1 ∪ L1·L2

Theorem. L=L(PT(S)/πfinal) is the smallest language in LRI which
includesS.

Theorem. The learnerφ identifies LRI in the limit from positive data.

J. Heinz (57) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Relation to other classes

LRI is incomparable with ZR . . .

and incomparable with LTSS, LT, . . .

i.e. it crosscuts the Subregular Hierarchy

Unknown if it is function-distinguishable (Fernau 2003)

J. Heinz (58) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Relation to other classes

LRI is incomparable with ZR . . .

and incomparable with LTSS, LT, . . .

i.e. it crosscuts the Subregular Hierarchy

Unknown if it is function-distinguishable (Fernau 2003)

J. Heinz (59) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Relation to other classes

LRI is incomparable with ZR . . .

and incomparable with LTSS, LT, . . .

i.e. it crosscuts the Subregular Hierarchy

Unknown if it is function-distinguishable (Fernau 2003)

J. Heinz (60) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

RLI: Language-theoretic Characterization

Languages in RLI are thereverseof languages in LRI.
They are those languages recognized by FSAs whose

head-canonical acceptors have at most one start state
all loops pass through the start state

RLI can be learned by a learner which merges start states in the
suffix tree of the sample.

J. Heinz (61) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

RLI: Language-theoretic Characterization

Languages in RLI are thereverseof languages in LRI.
They are those languages recognized by FSAs whose

head-canonical acceptors have at most one start state
all loops pass through the start state

RLI can be learned by a learner which merges start states in the
suffix tree of the sample.

J. Heinz (62) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

RLI: Language-theoretic Characterization

Languages in RLI are thereverseof languages in LRI.
They are those languages recognized by FSAs whose

head-canonical acceptors have at most one start state
all loops pass through the start state

RLI can be learned by a learner which merges start states in the
suffix tree of the sample.

J. Heinz (63) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

RLI: Language-theoretic Characterization

Languages in RLI are thereverseof languages in LRI.
They are those languages recognized by FSAs whose

head-canonical acceptors have at most one start state
all loops pass through the start state

RLI can be learned by a learner which merges start states in the
suffix tree of the sample.

J. Heinz (64) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

RLI: Language-theoretic Characterization

Languages in RLI are thereverseof languages in LRI.
They are those languages recognized by FSAs whose

head-canonical acceptors have at most one start state
all loops pass through the start state

RLI can be learned by a learner which merges start states in the
suffix tree of the sample.

J. Heinz (65) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

State-merging: Algorithm IM1

Begin with a structured representationPT of the sample

Use an equivalence relation to determine which states to merge

The equivalence relation is determined by a functionf

p ∼ q iff f (p) = f (q)

I.e. given sampleS, compute

PT(S)/πf

(Muggleton 1990)

J. Heinz (66) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

State-merging: Algorithm IM1

Begin with a structured representationPT of the sample

Use an equivalence relation to determine which states to merge

The equivalence relation is determined by a functionf

p ∼ q iff f (p) = f (q)

I.e. given sampleS, compute

PT(S)/πf

(Muggleton 1990)

J. Heinz (67) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

State-merging: Algorithm IM1

Begin with a structured representationPT of the sample

Use an equivalence relation to determine which states to merge

The equivalence relation is determined by a functionf

p ∼ q iff f (p) = f (q)

I.e. given sampleS, compute

PT(S)/πf

(Muggleton 1990)

J. Heinz (68) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

State-merging: Algorithm IM1

Begin with a structured representationPT of the sample

Use an equivalence relation to determine which states to merge

The equivalence relation is determined by a functionf

p ∼ q iff f (p) = f (q)

I.e. given sampleS, compute

PT(S)/πf

(Muggleton 1990)

J. Heinz (69) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

State-merging: Algorithm IM1

Begin with a structured representationM of the sample

Use an equivalence relation to determine which states to merge

The equivalence relation is determined by a functionf

p ∼ q iff f (p) = f (q)

I.e. given sampleS, compute

M(S)/πf

(Muggleton 1990)

J. Heinz (70) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Choices ofM andf

Choice ofM:
1 Prefix Tree
2 Suffix Tree

Choice off
1 same incoming k-pathsIk(q)
2 same outgoing k-pathsOk(q)
3 final statesfinal(q)
4 nonfinal statesnonfinal(q)
5 start statesstart(q)
6 nonstart statesnonstart(q)

J. Heinz (71) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Choices ofM andf

Choice ofM:
1 Prefix Tree
2 Suffix Tree

Choice off
1 same incoming k-pathsIk(q)
2 same outgoing k-pathsOk(q)
3 final statesfinal(q)
4 nonfinal statesnonfinal(q)
5 start statesstart(q)
6 nonstart statesnonstart(q)

J. Heinz (72) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Choices ofM andf

Choice ofM:
1 Prefix Tree
2 Suffix Tree

Choice off
1 same incoming k-pathsIk(q)
2 same outgoing k-pathsOk(q)
3 final statesfinal(q)
4 nonfinal statesnonfinal(q)
5 start statesstart(q)
6 nonstart statesnonstart(q)

J. Heinz (73) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Choices ofM andf

Choice ofM:
1 Prefix Tree
2 Suffix Tree

Choice off
1 same incoming k-pathsIk(q)
2 same outgoing k-pathsOk(q)
3 final statesfinal(q)
4 nonfinal statesnonfinal(q)
5 start statesstart(q)
6 nonstart statesnonstart(q)

J. Heinz (74) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Choices ofM andf

Choice ofM:
1 Prefix Tree
2 Suffix Tree

Choice off
1 same incoming k-pathsIk(q)
2 same outgoing k-pathsOk(q)
3 final statesfinal(q)
4 nonfinal statesnonfinal(q)
5 start statesstart(q)
6 nonstart statesnonstart(q)

J. Heinz (75) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Choices ofM andf

Choice ofM:
1 Prefix Tree
2 Suffix Tree

Choice off
1 same incoming k-pathsIk(q)
2 same outgoing k-pathsOk(q)
3 final statesfinal(q)
4 nonfinal statesnonfinal(q)
5 start statesstart(q)
6 nonstart statesnonstart(q)

J. Heinz (76) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Choices ofM andf

Choice ofM:
1 Prefix Tree
2 Suffix Tree

Choice off
1 same incoming k-pathsIk(q)
2 same outgoing k-pathsOk(q)
3 final statesfinal(q)
4 nonfinal statesnonfinal(q)
5 start statesstart(q)
6 nonstart statesnonstart(q)

q

a

c d

p

a

c d

J. Heinz (77) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Choices ofM andf

Choice ofM:
1 Prefix Tree
2 Suffix Tree

Choice off
1 same incoming k-pathsIk(q)
2 same outgoing k-pathsOk(q)
3 final statesfinal(q)
4 nonfinal statesnonfinal(q)
5 start statesstart(q)
6 nonstart statesnonstart(q)

q

a

c d

p

a

c d

J. Heinz (78) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Choices ofM andf

Choice ofM:
1 Prefix Tree
2 Suffix Tree

Choice off
1 same incoming k-pathsIk(q)
2 same outgoing k-pathsOk(q)
3 final statesfinal(q)
4 nonfinal statesnonfinal(q)
5 start statesstart(q)
6 nonstart statesnonstart(q)

q

a

c d

p

a

c d

J. Heinz (79) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Choices ofM andf

Choice ofM:
1 Prefix Tree
2 Suffix Tree

Choice off
1 same incoming k-pathsIk(q)
2 same outgoing k-pathsOk(q)
3 final statesfinal(q)
4 nonfinal statesnonfinal(q)
5 start statesstart(q)
6 nonstart statesnonstart(q)

q

a

c d

p

a

c d

J. Heinz (80) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Choices ofM andf

Choice ofM:
1 Prefix Tree
2 Suffix Tree

Choice off
1 same incoming k-pathsIk(q)
2 same outgoing k-pathsOk(q)
3 final statesfinal(q)
4 nonfinal statesnonfinal(q)
5 start statesstart(q)
6 nonstart statesnonstart(q)

q

a

c d

p

a

c d

J. Heinz (81) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Choices ofM andf

Choice ofM:
1 Prefix Tree
2 Suffix Tree

Choice off
1 same incoming k-pathsIk(q)
2 same outgoing k-pathsOk(q)
3 final statesfinal(q)
4 nonfinal statesnonfinal(q)
5 start statesstart(q)
6 nonstart statesnonstart(q)

q

a

c d

p

a

c d

J. Heinz (82) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Choices ofM andf

Choice ofM:
1 Prefix Tree
2 Suffix Tree

Choice off
1 same incoming k-pathsIk(q)
2 same outgoing k-pathsOk(q)
3 final statesfinal(q)
4 nonfinal statesnonfinal(q)
5 start statesstart(q)
6 nonstart statesnonstart(q)

J. Heinz (83) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Summary of known classes obtainable in this way

(Garcia et. al 1990)

f PT(S)/πf ST(S)/πf

Ik (k + 1) LTSS ?
Ok ? (k + 1) LTSS

final Lfin

start Lfin

nonfinal ? {L∗

1·L2 : L1, L2 ⊆ Σ1}
nonstart {L1·L∗

2 : L1, L2 ⊆ Σ1} ?

J. Heinz (84) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Summary of known classes obtainable in this way

f PT(S)/πf ST(S)/πf

Ik (k + 1) LTSS ?
Ok ? (k + 1) LTSS

final ? Lfin

start Lfin ?
nonfinal ? {L∗

1·L2 : L1, L2 ⊆ Σ1}
nonstart {L1·L∗

2 : L1, L2 ⊆ Σ1} ?

J. Heinz (85) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Summary of known classes obtainable in this way

f PT(S)/πf ST(S)/πf

Ik (k + 1) LTSS ?
Ok ? (k + 1) LTSS

final LRI Lfin

start Lfin RLI
nonfinal ? {L∗

1·L2 : L1, L2 ⊆ Σ1}
nonstart {L1·L∗

2 : L1, L2 ⊆ Σ1} ?

J. Heinz (86) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Summary of known classes obtainable in this way

f PT(S)/πf ST(S)/πf

Ik (k + 1) LTSS ?
Ok ? (k + 1) LTSS

final LRI Lfin

start Lfin RLI
nonfinal ? {L∗

1·L2 : L1, L2 ⊆ Σ1}
nonstart {L1·L∗

2 : L1, L2 ⊆ Σ1} ?

J. Heinz (87) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Neighborhood-distinctness

q
a c

db
p

a
c

d
a

b

The neighborhood of state is determined by the function:

ndk
j (q) = (I j(q), Ok(q), [q ∈ F], [q ∈ I ])

Neighborhood-distinct languages are those recognized by FSAs
where distinct states have distinct neighborhoods.

But a language-theoretic characterization is missing.

J. Heinz (88) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Neighborhood-distinctness

q
a c

db
p

a
c

d
a

b

The neighborhood of state is determined by the function:

ndk
j (q) = (I j(q), Ok(q), [q ∈ F], [q ∈ I ])

Neighborhood-distinct languages are those recognized by FSAs
where distinct states have distinct neighborhoods.

But a language-theoretic characterization is missing.

J. Heinz (89) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Neighborhood-distinctness

q
a c

db
p

a
c

d
a

b

The neighborhood of state is determined by the function:

ndk
j (q) = (I j(q), Ok(q), [q ∈ F], [q ∈ I ])

Neighborhood-distinct languages are those recognized by FSAs
where distinct states have distinct neighborhoods.

But a language-theoretic characterization is missing.

J. Heinz (90) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Strategy

q
a c

db
p

a
c

d
a

b

If we understand the parts, we understand the whole.

The neighborhood is a boolean composition of the simpler
properties mentioned earlier

ndk
j (q) = (I j(q), Ok(q), [q ∈ F], [q ∈ I ])

J. Heinz (91) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Strategy

q
a c

db
p

a
c

d
a

b

If we understand the parts, we understand the whole.

The neighborhood is a boolean composition of the simpler
properties mentioned earlier

ndk
j (q) = (I j(q), Ok(q), [q ∈ F], [q ∈ I ])

J. Heinz (92) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Strategy

q
a c

db
p

a
c

d
a

b

If we understand the parts, we understand the whole.

The neighborhood is a boolean composition of the simpler
properties mentioned earlier

ndk
j (q) = (I j(q), Ok(q), [q ∈ F], [q ∈ I ])

J. Heinz (93) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Strategy

q
a c

db
p

a
c

d
a

b

If we understand the parts, we understand the whole.

The neighborhood is a boolean composition of the simpler
properties mentioned earlier

ndk
j (q) = (I j(q), Ok(q), [q ∈ F], [q ∈ I ])

J. Heinz (94) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Strategy

q
a c

db
p

a
c

d
a

b

If we understand the parts, we understand the whole.

The neighborhood is a boolean composition of the simpler
properties mentioned earlier

ndk
j (q) = (I j(q), Ok(q), [q ∈ F], [q ∈ I ])

J. Heinz (95) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Strategy

q
a c

db
p

a
c

d
a

b

The neighborhood is a boolean composition of the simpler
properties mentioned earlier

ndk
j (q) = (I j(q), Ok(q), [q ∈ F], [q ∈ I ])

final(q) (which helps return LRI) is part of the boolean
composition of[q ∈ F]

start(q) (which helps return RLI) is part of the boolean
composition of[q ∈ I ]

J. Heinz (96) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Strategy

q
a c

db
p

a
c

d
a

b

The neighborhood is a boolean composition of the simpler
properties mentioned earlier

ndk
j (q) = (I j(q), Ok(q), [q ∈ F], [q ∈ I ])

final(q) (which helps return LRI) is part of the boolean
composition of[q ∈ F]

start(q) (which helps return RLI) is part of the boolean
composition of[q ∈ I ]

J. Heinz (97) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Strategy

q
a c

db
p

a
c

d
a

b

The neighborhood is a boolean composition of the simpler
properties mentioned earlier

ndk
j (q) = (I j(q), Ok(q), [q ∈ F], [q ∈ I ])

final(q) (which helps return LRI) is part of the boolean
composition of[q ∈ F]

start(q) (which helps return RLI) is part of the boolean
composition of[q ∈ I ]

J. Heinz (98) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Summary of known classes obtainable in this way

f PT(S)/πf ST(S)/πf

Ik (k + 1) LTSS ?
Ok ? (k + 1) LTSS

final LRI Lfin

start Lfin RLI
nonfinal ? {L∗

1·L2 : L1, L2 ⊆ Σ1}
nonstart {L1·L∗

2 : L1, L2 ⊆ Σ1} ?
. . .

J. Heinz (99) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Conclusion

LRI (RLI) languages are infinite subclasses of the regular
languages that

1 are obtained by merging final (start) states in prefix (suffix)trees
2 are cousins of zero-reversible languages
3 help reveal the algebra underlying state-merging algorithms and

the reverse operator

Phonotactic patterns are regular and it is an open question which
of their properties are sufficient or necessary for learning

The neighborhood-distinct hypothesis is one proposal

The LRI and RLI languages are a small but necessary step
towards a better understanding of this proposal

J. Heinz (100) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Conclusion

LRI (RLI) languages are infinite subclasses of the regular
languages that

1 are obtained by merging final (start) states in prefix (suffix)trees
2 are cousins of zero-reversible languages
3 help reveal the algebra underlying state-merging algorithms and

the reverse operator

Phonotactic patterns are regular and it is an open question which
of their properties are sufficient or necessary for learning

The neighborhood-distinct hypothesis is one proposal

The LRI and RLI languages are a small but necessary step
towards a better understanding of this proposal

J. Heinz (101) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Conclusion

LRI (RLI) languages are infinite subclasses of the regular
languages that

1 are obtained by merging final (start) states in prefix (suffix)trees
2 are cousins of zero-reversible languages
3 help reveal the algebra underlying state-merging algorithms and

the reverse operator

Phonotactic patterns are regular and it is an open question which
of their properties are sufficient or necessary for learning

The neighborhood-distinct hypothesis is one proposal

The LRI and RLI languages are a small but necessary step
towards a better understanding of this proposal

J. Heinz (102) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Conclusion

LRI (RLI) languages are infinite subclasses of the regular
languages that

1 are obtained by merging final (start) states in prefix (suffix)trees
2 are cousins of zero-reversible languages
3 help reveal the algebra underlying state-merging algorithms and

the reverse operator

Phonotactic patterns are regular and it is an open question which
of their properties are sufficient or necessary for learning

The neighborhood-distinct hypothesis is one proposal

The LRI and RLI languages are a small but necessary step
towards a better understanding of this proposal

J. Heinz (103) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Conclusion

LRI (RLI) languages are infinite subclasses of the regular
languages that

1 are obtained by merging final (start) states in prefix (suffix)trees
2 are cousins of zero-reversible languages
3 help reveal the algebra underlying state-merging algorithms and

the reverse operator

Phonotactic patterns are regular and it is an open question which
of their properties are sufficient or necessary for learning

The neighborhood-distinct hypothesis is one proposal

The LRI and RLI languages are a small but necessary step
towards a better understanding of this proposal

J. Heinz (104) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Conclusion

LRI (RLI) languages are infinite subclasses of the regular
languages that

1 are obtained by merging final (start) states in prefix (suffix)trees
2 are cousins of zero-reversible languages
3 help reveal the algebra underlying state-merging algorithms and

the reverse operator

Phonotactic patterns are regular and it is an open question which
of their properties are sufficient or necessary for learning

The neighborhood-distinct hypothesis is one proposal

The LRI and RLI languages are a small but necessary step
towards a better understanding of this proposal

J. Heinz (105) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Conclusion

LRI (RLI) languages are infinite subclasses of the regular
languages that

1 are obtained by merging final (start) states in prefix (suffix)trees
2 are cousins of zero-reversible languages
3 help reveal the algebra underlying state-merging algorithms and

the reverse operator

Phonotactic patterns are regular and it is an open question which
of their properties are sufficient or necessary for learning

The neighborhood-distinct hypothesis is one proposal

The LRI and RLI languages are a small but necessary step
towards a better understanding of this proposal

J. Heinz (106) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

RLI: Language-theoretic Characterization

LRI languages are defined as the intersectionof two classes of
languages.

1 {L : wheneveru, v ∈ L, HL(u) = HL(v)}

2 {L∗

1·L2 : L1, L2 ∈ Lfin}

J. Heinz (107) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

RLI: Language-theoretic Characterization

LRI languages are defined as the intersectionof two classes of
languages.

1 {L : wheneveru, v ∈ L, HL(u) = HL(v)}

2 {L∗

1·L2 : L1, L2 ∈ Lfin}

J. Heinz (108) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

RLI: Language-theoretic Characterization

LRI languages are defined as the intersectionof two classes of
languages.

1 {L : wheneveru, v ∈ L, HL(u) = HL(v)}

2 {L∗

1·L2 : L1, L2 ∈ Lfin}

J. Heinz (109) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

What isHL(u)?

HL(u) = {v : vu∈ L}

It used to definehead-canonical acceptorswhich are the
smallest reverse-deterministic acceptor for a regular language.

J. Heinz (110) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

What isHL(u)?

HL(u) = {v : vu∈ L}

It used to definehead-canonical acceptorswhich are the
smallest reverse-deterministic acceptor for a regular language.

J. Heinz (111) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Learning RLI

Mergestart states in thesuffix tree

φ(St) = ST(St)/πstart

Merge states to remove reverse non-determinism

J. Heinz (112) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Learning RLI

Mergestart states in thesuffix tree

φ(St) = ST(St)/πstart

Merge states to remove reverse non-determinism

J. Heinz (113) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Illustration of Learning RLI

Sample = { a, b, dcba, bcbb}

1

0a
2

b
3

c
4

d

5 b6
b

7
c

8
b

J. Heinz (114) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Illustration of Learning RLI

Sample = { a, b, dcba, bcbb}

1-4-5-8

0a

b

3d

7

b

2b

c

6

b

c

J. Heinz (115) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Illustration of Learning RLI

Sample = { a, b, dcba, bcbb}

1-4-5-8

0a

b

3d

7

b

2-6

b

c

c

J. Heinz (116) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Illustration of Learning RLI

Sample = { a, b, dcba, bcbb}

1-4-5-8

0
a

b

3-7
d

b

2-6
b

c

J. Heinz (117) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Asymmetric Harmony

Sarcee is like Navajo except the pattern is asymmetric: [S] may
precede [s] in a word, but [s] cannot precede [S]

Includes {sotos, SotoS, Sotos, . . . }
Excludes {sotoS, . . . }

This pattern is Noncounting.

(Hansson 2001)

J. Heinz (118) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Asymmetric Harmony

Sarcee is like Navajo except the pattern is asymmetric: [S] may
precede [s] in a word, but [s] cannot precede [S]

Includes {sotos, SotoS, Sotos, . . . }
Excludes {sotoS, . . . }

This pattern is Noncounting.

(Hansson 2001)

J. Heinz (119) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Asymmetric Harmony

Sarcee is like Navajo except the pattern is asymmetric: [S] may
precede [s] in a word, but [s] cannot precede [S]

Includes {sotos, SotoS, Sotos, . . . }
Excludes {sotoS, . . . }

This pattern is Noncounting.

(Hansson 2001)

J. Heinz (120) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Asymmetric Harmony

Sarcee is like Navajo except the pattern is asymmetric: [S] may
precede [s] in a word, but [s] cannot precede [S]

Includes {sotos, SotoS, Sotos, . . . }
Excludes {sotoS, . . . }

This pattern is Noncounting.

(Hansson 2001)

J. Heinz (121) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Bounded Stress Patterns

Secondary stress falls on nonfinal odd syllables (counting from
left)

Primary stress falls on the initial syllable

a. σ́ σ p�aïa ‘earth’
b. σ́ σ σ tj�uúaya ‘many’
c. σ́ σ σ̀ σ m�aíaw�ana ‘through from behind’
d. σ́ σ σ̀ σ σ p�uíiNk�alatju ‘we (sat) on the hill’
e. σ́ σ σ̀ σ σ̀ σ tj�amul��mpatj�uNku ‘our relation’
f. σ́ σ σ̀ σ σ̀ σ σ ú��íir�iNul�ampatju ‘the fire for our benefit flared up’
g. σ́ σ σ̀ σ σ̀ σ σ̀ σ k�uranj�ulul��mpatj�uõa ‘the first one who is our relation’
h. σ́ σ σ̀ σ σ̀ σ σ̀ σ σ y�umaõ��Nkam�aratj�uõaka ‘because of mother-in-law’

Hayes (1995:62) citing Hansen and Hansen (1969:163)

J. Heinz (122) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Bounded Stress Patterns

Secondary stress falls on nonfinal odd syllables (counting from
left)

Primary stress falls on the initial syllable

a. σ́ σ p�aïa ‘earth’
b. σ́ σ σ tj�uúaya ‘many’
c. σ́ σ σ̀ σ m�aíaw�ana ‘through from behind’
d. σ́ σ σ̀ σ σ p�uíiNk�alatju ‘we (sat) on the hill’
e. σ́ σ σ̀ σ σ̀ σ tj�amul��mpatj�uNku ‘our relation’
f. σ́ σ σ̀ σ σ̀ σ σ ú��íir�iNul�ampatju ‘the fire for our benefit flared up’
g. σ́ σ σ̀ σ σ̀ σ σ̀ σ k�uranj�ulul��mpatj�uõa ‘the first one who is our relation’
h. σ́ σ σ̀ σ σ̀ σ σ̀ σ σ y�umaõ��Nkam�aratj�uõaka ‘because of mother-in-law’

Hayes (1995:62) citing Hansen and Hansen (1969:163)

J. Heinz (123) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Unbounded Stress Patterns

KwaKwala: Leftmost Heavy Otherwise Rightmost

Stress the heavy syllable closest to the left edge. If there is no
heavy syllable, stress the rightmost syllable.

a. H́ H H d. L Ĺ
b. L L H́ L L e. L L Ĺ
c. L L L H́ f. L L L Ĺ

Walker (2000:21) citing Zec (1994)

J. Heinz (124) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Language Patterns and the Chomsky Hierarchy

Finite Regular Context Free Context
Sensitive

Mildly
Sensitive
Context

J. Heinz (125) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Language Patterns and the Chomsky Hierarchy

Finite Regular Context Free Context
Sensitive

Mildly
Sensitive
Context

Embedding
English Nested

(Chomsky 1956)

Swiss German
Crossing Dependencies
(Schieber 1985)

Yoruba Copying
(Kobele 2006)

J. Heinz (126) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Language Patterns and the Chomsky Hierarchy

Finite Regular Context Free Context
Sensitive

Mildly
Sensitive
Context

Embedding
English Nested

(Chomsky 1956)

Swiss German
Crossing Dependencies
(Schieber 1985)

Yoruba Copying
(Kobele 2006)

(Kisseberth 1973)

Pintupi Stress
(Hansen and Hansen 1969)

Navajo Sibilant Harmony
(Sapir and Hojier 1967)

Yawelmani Yokuts
Consonant Clusters

J. Heinz (127) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Language Patterns and the Chomsky Hierarchy

Finite Regular Context Free Context
Sensitive

Mildly
Sensitive
Context

Embedding
English Nested

(Chomsky 1956)

Swiss German
Crossing Dependencies
(Schieber 1985)

Yoruba Copying
(Kobele 2006)

(Kisseberth 1973)

Pintupi Stress
(Hansen and Hansen 1969)

Navajo Sibilant Harmony
(Sapir and Hojier 1967)

Yawelmani Yokuts
Consonant Clusters

J. Heinz (128) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages



Introduction Phonotactics LRI and RLI languages State-merging Algorithms Neighborhood-distinctness Appendices

Language Patterns and the Chomsky Hierarchy

Finite Regular Context Free Context
Sensitive

Mildly
Sensitive
Context

Embedding
English Nested

(Chomsky 1956)

Swiss German
Crossing Dependencies
(Schieber 1985)

Yoruba Copying
(Kobele 2006)

(Kisseberth 1973)

Pintupi Stress
(Hansen and Hansen 1969)

Navajo Sibilant Harmony
(Sapir and Hojier 1967)

Yawelmani Yokuts
Consonant Clusters

J. Heinz (129) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Languages


	Introduction
	Phonotactics
	LRI and RLI languages
	State-merging Algorithms
	Neighborhood-distinctness
	Appendices

