
ICGI 2008:

A Learning Algorithm for
Multi-dimensional Trees, or:

Learning Beyond Context-Freeness
Anna Kasprzik – University of Trier, Germany

kasprzik@informatik.uni-trier.de

ICGI 2008: A Learning Algorithm for Multi-dimensional Trees, or: Learning Beyond Context-Freeness – p.1/19

Contents

Part I – Formal groundwork: Multi-dimensional trees

Part II – The adapted MAT learning algorithm L∗ for
multi-dimensional trees

ICGI 2008: A Learning Algorithm for Multi-dimensional Trees, or: Learning Beyond Context-Freeness – p.2/19

Introduction

It is possible to learn cf string languages via their
connection (yield) to regular tree languages.

We would like to show that this MAT-learnable class
extends even further.

We do that via multi-dimensional trees as structural
descriptions.

In order to obtain that result we have to introduce a new
term-like notation for multi-dimensional trees which
establishes them as a direct and natural generalization
of classical trees.

ICGI 2008: A Learning Algorithm for Multi-dimensional Trees, or: Learning Beyond Context-Freeness – p.3/19

Preliminaries – Trees

The set TΣ of all trees over a ranked alphabet Σ is
defined inductively as the smallest set of expressions st

f ∈ TΣ for every f ∈ Σ0 and
f [t1, . . . , tn] ∈ TΣ for every f ∈ Σn and t1, . . . , tn ∈ TΣ.

� be a special symbol of rank 0. A tree c ∈ TΣ∪{�} in
which � occurs exactly once is a context, the set of all
contexts over Σ is CΣ. For c ∈ CΣ and s ∈ TΣ, c[[s]]
denotes the tree obtained by substituting s for � in c.

ICGI 2008: A Learning Algorithm for Multi-dimensional Trees, or: Learning Beyond Context-Freeness – p.4/19

Multi-dimensional trees (Rogers 2003)

one-dimensional tree (string)

root point

complex one-dimensional tree (string)

simple (local) two-dimensional tree

root

complex one-dimensional tree

zero-dimensional tree
(point)

ICGI 2008: A Learning Algorithm for Multi-dimensional Trees, or: Learning Beyond Context-Freeness – p.5/19

Multi-dimensional trees (Rogers 2003)

(labeled) a b c d c

e f

b d

a

composite -

local

d 1 2 3

r

a

b

d

e

c

f

g

k

j

i

h

0

ICGI 2008: A Learning Algorithm for Multi-dimensional Trees, or: Learning Beyond Context-Freeness – p.6/19

d-dimensional tree labeling alphabets

We will use finite d-dimensional tree labeling alphabets Σd

where each symbol f ∈ Σd is associated with at least one
unlabeled (d − 1)-dimensional tree t specifying the
admissible child structure for a root labeled with f .

f (f ∈ Σ3

t
)

Let Σd
t for d ≥ 1 be the set of all symbols associated with t.

ICGI 2008: A Learning Algorithm for Multi-dimensional Trees, or: Learning Beyond Context-Freeness – p.7/19

Multi-dimensional trees (overΣ
d
t)

Let Σ0 be a set of constant symbols. The set TΣd of all
d-dimensional trees can be defined inductively as follows:

Definition 1 Let εd be the empty d-dimensional tree. Then

TΣ0 := {ε0} ∪ Σ0, and

for d ≥ 1: TΣd is the smallest set such that εd ∈ TΣd and
f [t1, . . . , tn]t ∈ TΣd for every f ∈ Σd

t , n the number of
nodes in t, t1, . . . , tn ∈ TΣd and t1, . . . , tn are rooted
breadth-first in that order at the nodes of t.

Contexts are defined as before (� being a symbol
associated with εd−1).

ICGI 2008: A Learning Algorithm for Multi-dimensional Trees, or: Learning Beyond Context-Freeness – p.8/19

Multi-dimensional trees – intuition

f ∈ Σ
3

t

t1

t5

t4

t =

f

ICGI 2008: A Learning Algorithm for Multi-dimensional Trees, or: Learning Beyond Context-Freeness – p.9/19

Multi-dim. finite-state tree automata

Definition 2 A finite-state d-dimensional tree automaton is
a quadruple Ad = (Σd, Q, δ, F) with

input alphabet Σd,

finite set of states Q,

set of accepting states F ⊆ Q and

transition function δ with δ(t(q1, . . . , qn), f) ∈ Q for every
f ∈ Σd

t where t(q1, . . . , qn) encodes the assignment of
states to the nodes of t.

δ : TΣd −→ Q is defined such that if tp = f [t1, . . . , tn]t ∈ TΣd

then δ(tp) = δ(t(δ(t1), . . . , δ(tn)), f).

ICGI 2008: A Learning Algorithm for Multi-dimensional Trees, or: Learning Beyond Context-Freeness – p.10/19

Myhill-Nerode (for multi-dim. trees)

L ⊆ TΣd. For s, s′ ∈ TΣd, s ∼L s′ iff for every c ∈ CΣd,
c[[s]] ∈ L ⇔ c[[s′]] ∈ L. The index of L is |{[s]L|s ∈ TΣd}|.

Theorem 3 L is regular iff L is of finite index.

Corollary. If a tree language is of finite index, we can build an
fta Ad

L recognizing L, with Q = {[s]L|s ∈ TΣd},
F = {[s]L|s ∈ L}, and, given some f ∈ Σd

t and states
[s1]L, . . . , [sn]L, δL(t([s1]L, . . . , [sn]L), f) = [f [s1, . . . , sn]t]L.

Ad
L is the unique minimal fta recognizing L (up to a bijective

renaming of states).

ICGI 2008: A Learning Algorithm for Multi-dimensional Trees, or: Learning Beyond Context-Freeness – p.11/19

Multi-dimensional trees – yield

The (direct) yield of a d-dimensional tree is a projection
on the (d − 1)-dimensional level.

The string yield of a d-dimensional tree can be obtained
by taking the direct yield (d − 1) times.

ICGI 2008: A Learning Algorithm for Multi-dimensional Trees, or: Learning Beyond Context-Freeness – p.12/19

Part II: Learning algorithm (multidim.)

The learner is helped by a teacher who can answer
membership and equivalence queries (and return a
counterexample). He maintains an observation table.

Definition 4 The pair (S,C) (S ⊆ TΣd, C ⊆ CΣd finite, C 6= ∅)
is called an observation table if the following holds:

For every (d-dimensional) tree f [s1, . . . , sn]t ∈ S:
s1, . . . , sn ∈ S as well – S is subtree-closed, and

for every context c0 ∈ C of the form
c[[f [s1, . . . , si−1,�, si+1, . . . , sn]t]] ∈ C: c ∈ C and
s1, . . . , si−1, si+1, . . . , sn ∈ S – we say that C is
generalization-closed.

ICGI 2008: A Learning Algorithm for Multi-dimensional Trees, or: Learning Beyond Context-Freeness – p.13/19

Learning algorithm (multidim.)

Definition 5 Observation table T = (S,C) is closed if
obsT (Σd(S)) ⊆ obsT (S), and consistent if, for all f ∈ Σd

t and
all s1, . . . , sn, s′1, . . . , s

′
n ∈ S, if obsT (si) = obsT (s′i) for all i with

1 ≤ i ≤ n then obsT (f [s1, . . . , sn]t) = obsT (f [s′1, . . . , s
′
n]t).

From a closed and consistent OT T = (S,C) one can
synthesize an fta Ad

T with QT = {obsT (s)|s ∈ S} as set of
states, FT = {obsT (s)|s ∈ S ∩ U} as set of accepting states,
and δT (t(obsT (s1) · · · obsT (sn)), f) = obsT (f [s1, . . . , sn]t) for all
f ∈ Σd

t and s1, . . . , sn ∈ S.

ICGI 2008: A Learning Algorithm for Multi-dimensional Trees, or: Learning Beyond Context-Freeness – p.14/19

The algorithm

T = (S,C) := ({a}, {�}) for some arbitrary a ∈ Σd
εd−1 ;

while | {obsT (s) | s ∈ S} | < I do
if T is not closed then T := CLOSURE(T)
else if T is not consistent then T := RESOLVE(T)
else T := EXTEND(T)

end while;
return Ad

T;

procedure CLOSURE(T) where T = (S,C)

find s ∈ Σd(S) such that obsT (s) /∈ obsT (S);
return (S ∪ {s}, C);

ICGI 2008: A Learning Algorithm for Multi-dimensional Trees, or: Learning Beyond Context-Freeness – p.15/19

The algorithm

procedure RESOLVE(T) where T = (S,C)

find c[[s]], c[[s′]] ∈ Σd(S) where s, s′ ∈ S and
depth(c) = 1 such that

obsT (c[[s]]) 6= obsT (c[[s′]]) and obsT (s) = obsT (s′);
find t, t′ ∈ S such that

obsT (t) = obsT (c[[s]]) and obsT (t′) = obsT (c[[s′]]);
find c′ ∈ C such that obsT (t)(c′) 6= obsT (t′)(c′);
return (S,C ∪ {c′[[c]]});

ICGI 2008: A Learning Algorithm for Multi-dimensional Trees, or: Learning Beyond Context-Freeness – p.16/19

The algorithm

procedure EXTEND(T) where T = (S,C)

Ad
T := synthesize(T);

return EXTRACT(T, counterexample(Ad
T));

procedure EXTRACT(T, t) where T = (S,C)

choose c ∈ CΣd and s ∈ subtrees(t) ∩ (Σd(S) \ S)
such

that t = c[[s]];
if there exists s′ ∈ S such that

obsT (s′) = obsT (s) and t ∈ U ⇔ c[[s′]] ∈ U then
return EXTRACT(T, c[[s′]]);

else return (S ∪ {s}, C)
end if;

ICGI 2008: A Learning Algorithm for Multi-dimensional Trees, or: Learning Beyond Context-Freeness – p.17/19

Conclusion

Theorem 6 The learner returns the unique minimal
automaton Ad

U for U (up to a bijective renaming of states)
after less than 2I loop executions.

We have shown that the algorithm by Drewes and
Högberg [2] can be used in an almost unchanged form
to learn multi-dimensional trees, with the new notation.

Consequently the algorithm is able to learn even string
languages beyond the cf class, via the yield function.

ICGI 2008: A Learning Algorithm for Multi-dimensional Trees, or: Learning Beyond Context-Freeness – p.18/19

Thank you!

References
[1] Angluin, D.: Learning regular sets from queries and counterexamples. Information and

Computation 75(2), 87–106 (1987)

[2] Drewes, F., Högberg, J.: Learning a Regular Tree Language from a Teacher. In:
Developments in Lang. Th. 2003. LNCS, vol. 2710, pp. 279–291. Springer (2003)

[3] Rogers, J.: Syntactic Structures as Multi-dimensional Trees. Research on Language and
Computation 1, 265–305 (2003)

[4] Rogers, J.: wMSO Theories as Grammar Formalisms. Theoretical Computer Science
293, 291–320 (2003)

[5] Kasprzik, A.: Making Finite-State Methods Applicable to Languages Beyond
Context-Freeness via Multi-dimensional Trees. Technical Report 08-3, University of Trier.
Available on: urts117.uni-trier.de/cms/index.php?id=15939
(to appear in the Post-Proceedings of FSMNLP 2008)

ICGI 2008: A Learning Algorithm for Multi-dimensional Trees, or: Learning Beyond Context-Freeness – p.19/19

	Contents
	Introduction
	Preliminaries -- Trees
	Multi-dimensional trees (Rogers 2003)
	Multi-dimensional trees (Rogers 2003)
	d-dimensional tree labeling alphabets
	Multi-dimensional trees (over $Sigma ^d_t$)
	Multi-dimensional trees -- intuition
	Multi-dim. finite-state tree automata
	Myhill-Nerode (for multi-dim. trees)
	Multi-dimensional trees -- yield
	Part II: Learning algorithm (multidim.)
	Learning algorithm (multidim.)
	The algorithm
	The algorithm
	The algorithm
	Conclusion
	Thank you!

