ICGI 2008:

A Learning Algorithm for Multi-dimensional Trees, or: Learning Beyond Context-Freeness

Anna Kasprzik – University of Trier, Germany

kasprzik@informatik.uni-trier.de

Contents

▶ Part I – Formal groundwork: Multi-dimensional trees

Part II – The adapted MAT learning algorithm L* for multi-dimensional trees

Introduction

- It is possible to learn cf string languages via their connection (yield) to regular tree languages.
- We would like to show that this MAT-learnable class extends even further.
- We do that via multi-dimensional trees as structural descriptions.
- In order to obtain that result we have to introduce a new term-like notation for multi-dimensional trees which establishes them as a direct and natural generalization of classical trees.

Preliminaries – Trees

- The set T_{Σ} of all trees over a ranked alphabet Σ is defined inductively as the smallest set of expressions st
 - $f \in T_{\Sigma}$ for every $f \in \Sigma_0$ and
 - $f[t_1,\ldots,t_n]\in T_\Sigma$ for every $f\in\Sigma_n$ and $t_1,\ldots,t_n\in T_\Sigma$.
- **●** □ be a special symbol of rank 0. A tree $c \in T_{\Sigma \cup \{\Box\}}$ in which \Box occurs exactly once is a *context*, the set of all contexts over Σ is C_{Σ} . For $c \in C_{\Sigma}$ and $s \in T_{\Sigma}$, c[[s]] denotes the tree obtained by substituting s for \Box in c.

Multi-dimensional trees (Rogers 2003)

zero-dimensional tree (point)

one-dimensional tree (string)

root point

complex one-dimensional tree (string)

simple (local) two-dimensional tree

Multi-dimensional trees (Rogers 2003)

d-dimensional tree labeling alphabets

We will use finite d-dimensional tree labeling alphabets Σ^d where each symbol $f \in \Sigma^d$ is associated with at least one unlabeled (d-1)-dimensional tree t specifying the admissible child structure for a root labeled with f.

$$f \qquad (f \in \Sigma_t^3)$$

Let Σ_t^d for $d \ge 1$ be the set of all symbols associated with t.

Multi-dimensional trees (over Σ_t^d)

Let Σ^0 be a set of constant symbols. The set \mathbb{T}_{Σ^d} of all d-dimensional trees can be defined inductively as follows:

Definition 1 Let ε^d be the empty d-dimensional tree. Then

- $\mathbb{T}_{\Sigma^0}:=\{arepsilon^0\}\cup\Sigma^0$, and
- for $d \geq 1$: \mathbb{T}_{Σ^d} is the smallest set such that $\varepsilon^d \in \mathbb{T}_{\Sigma^d}$ and $f[t_1, \ldots, t_n]_t \in \mathbb{T}_{\Sigma^d}$ for every $f \in \Sigma^d_t$, n the number of nodes in $t, t_1, \ldots, t_n \in \mathbb{T}_{\Sigma^d}$ and t_1, \ldots, t_n are rooted breadth-first in that order at the nodes of t.

Contexts are defined as before (\square being a symbol associated with ε^{d-1}).

Multi-dimensional trees – intuition

Multi-dim. finite-state tree automata

Definition 2 A finite-state d-dimensional tree automaton is a quadruple $\mathcal{A}^d = (\Sigma^d, Q, \delta, F)$ with

- input alphabet Σ^d ,
- finite set of states Q,
- set of accepting states $F \subseteq Q$ and
- transition function δ with $\delta(t(q_1, \ldots, q_n), f) \in Q$ for every $f \in \Sigma_t^d$ where $t(q_1, \ldots, q_n)$ encodes the assignment of states to the nodes of t.

 $\delta: \mathbb{T}_{\Sigma^d} \longrightarrow Q$ is defined such that if $t_p = f[t_1, \dots, t_n]_t \in \mathbb{T}_{\Sigma^d}$ then $\delta(t_p) = \delta(t(\delta(t_1), \dots, \delta(t_n)), f)$.

Myhill-Nerode (for multi-dim. trees)

 $L \subseteq \mathbb{T}_{\Sigma^d}$. For $s, s' \in \mathbb{T}_{\Sigma^d}$, $s \sim_L s'$ iff for every $c \in C_{\Sigma^d}$, $c[[s]] \in L \Leftrightarrow c[[s']] \in L$. The *index* of L is $|\{[s]_L | s \in \mathbb{T}_{\Sigma^d}\}|$.

Theorem 3 L is regular iff L is of finite index.

Corollary. If a tree language is of finite index, we can build an fta \mathcal{A}_L^d recognizing L, with $Q = \{[s]_L | s \in \mathbb{T}_{\Sigma^d}\}$, $F = \{[s]_L | s \in L\}$, and, given some $f \in \Sigma_t^d$ and states $[s_1]_L, \ldots, [s_n]_L, \delta_L(t([s_1]_L, \ldots, [s_n]_L), f) = [f[s_1, \ldots, s_n]_t]_L$.

 \mathcal{A}_L^d is the unique minimal fta recognizing L (up to a bijective renaming of states).

Multi-dimensional trees — yield

- The (direct) yield of a d-dimensional tree is a projection on the (d-1)-dimensional level.
- The string yield of a d-dimensional tree can be obtained by taking the direct yield (d-1) times.

Part II: Learning algorithm (multidim.)

The learner is helped by a teacher who can answer membership and equivalence queries (and return a counterexample). He maintains an *observation table*.

Definition 4 The pair (S,C) ($S \subseteq \mathbb{T}_{\Sigma^d}, C \subseteq C_{\Sigma^d}$ finite, $C \neq \emptyset$) is called an observation table if the following holds:

- ▶ For every (d-dimensional) tree $f[s_1, ..., s_n]_t \in S$: $s_1, ..., s_n \in S$ as well -S is subtree-closed, and
- for every context $c_0 \in C$ of the form $c[[f[s_1, \ldots, s_{i-1}, \square, s_{i+1}, \ldots, s_n]_t]] \in C$: $c \in C$ and $s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n \in S$ we say that C is generalization-closed.

Learning algorithm (multidim.)

Definition 5 Observation table T = (S, C) is closed if $obs_T(\Sigma^d(S)) \subseteq obs_T(S)$, and consistent if, for all $f \in \Sigma^d_t$ and all $s_1, \ldots, s_n, s'_1, \ldots, s'_n \in S$, if $obs_T(s_i) = obs_T(s'_i)$ for all i with $1 \le i \le n$ then $obs_T(f[s_1, \ldots, s_n]_t) = obs_T(f[s'_1, \ldots, s'_n]_t)$.

From a closed and consistent OT T=(S,C) one can synthesize an fta \mathcal{A}_T^d with $Q_T=\{obs_T(s)|s\in S\}$ as set of states, $F_T=\{obs_T(s)|s\in S\cap U\}$ as set of accepting states, and $\delta_T(t(obs_T(s_1)\cdots obs_T(s_n)),f)=obs_T(f[s_1,\ldots,s_n]_t)$ for all $f\in \Sigma_t^d$ and $s_1,\ldots,s_n\in S$.

The algorithm

```
T = (S, C) := (\{a\}, \{\Box\}) for some arbitrary a \in \Sigma_{cd-1}^d;
while |\{obs_T(s) \mid s \in S\}| < I do
    if T is not closed then T := CLOSURE(T)
    else if T is not consistent then T := RESOLVE(T)
    else T := EXTEND(T)
end while;
return \mathcal{A}_T^d;
procedure CLOSURE(T) where T = (S, C)
    find s \in \Sigma^d(S) such that obs_T(s) \notin obs_T(S);
    return (S \cup \{s\}, C);
```

The algorithm

```
procedure RESOLVE(T) where T=(S,C) find c[[s]], c[[s']] \in \Sigma^d(S) where s,s' \in S and depth(c)=1 such that obs_T(c[[s]]) \neq obs_T(c[[s']]) and obs_T(s)=obs_T(s'); find t,t' \in S such that obs_T(t)=obs_T(c[[s]]) and obs_T(t')=obs_T(c[[s']]); find c' \in C such that obs_T(t)(c') \neq obs_T(t')(c'); return (S,C \cup \{c'[[c]]\});
```

The algorithm

```
procedure EXTEND(T) where T = (S, C)
    \mathcal{A}_T^d := synthesize(T);
    return EXTRACT (T, counterexample(\mathcal{A}_T^d));
procedure EXTRACT(T, t) where T = (S, C)
    choose c \in C_{\Sigma^d} and s \in subtrees(t) \cap (\Sigma^d(S) \setminus S)
such
       that t = c[[s]];
    if there exists s' \in S such that
       obs_T(s') = obs_T(s) and t \in U \Leftrightarrow c[[s']] \in U then
       return EXTRACT (T, c[[s']]);
    else return (S \cup \{s\}, C)
    end if;
```

Conclusion

Theorem 6 The learner returns the unique minimal automaton \mathcal{A}_U^d for U (up to a bijective renaming of states) after less than 2I loop executions.

- We have shown that the algorithm by Drewes and Högberg [2] can be used in an almost unchanged form to learn multi-dimensional trees, with the new notation.
- Consequently the algorithm is able to learn even string languages beyond the cf class, via the yield function.

Thank you!

References

- [1] Angluin, D.: Learning regular sets from queries and counterexamples. Information and Computation 75(2), 87–106 (1987)
- [2] Drewes, F., Högberg, J.: Learning a Regular Tree Language from a Teacher. In: Developments in Lang. Th. 2003. LNCS, vol. 2710, pp. 279–291. Springer (2003)
- [3] Rogers, J.: Syntactic Structures as Multi-dimensional Trees. Research on Language and Computation 1, 265–305 (2003)
- [4] Rogers, J.: wMSO Theories as Grammar Formalisms. Theoretical Computer Science 293, 291–320 (2003)
- [5] Kasprzik, A.: Making Finite-State Methods Applicable to Languages Beyond Context-Freeness via Multi-dimensional Trees. Technical Report 08-3, University of Trier. Available on: urts117.uni-trier.de/cms/index.php?id=15939 (to appear in the Post-Proceedings of FSMNLP 2008)