

Using Multiplicity Automata to Identify Transducer Relations from Membership and Equivalence Queries

Jose Oncina

Dept. Lenguajes y Sistemas Informáticos - Universidad de Alicante
oncina@dlsi.ua.es

- Usually a transduction is viewed as a string to string function

$$
f(\text { "My red car" })=\text { "mi coche rojo" }
$$

\Rightarrow A particular type of transductions is the Subsequential Transductions - are based on a DFA
. We have algorithms to deal with this type of transductions

- The OSTIA algorithm: from input-output pairs
- The Vilar algorithm: from MAT
- Sometimes we have to cope with ambiguities
f("My red car") = "Mi coche (rojo + colorado + encarnado)"
- Usually a transduction is viewed as a string to string function

$$
f(\text { "My red car" })=\text { "mi coche rojo" }
$$

- A particular type of transductions is the Subsequential Transductions
- are based on a DFA
- We have algorithms to deal with this type of transductions - The OSTIA algorithm: from input-output pairs
- The Vilar algorithm: from MAT
- Sometimes we have to cope with ambiguities
$f($ "My red car" $)=$ "Mi coche (rojo + colorado + encarnado)"
- Usually a transduction is viewed as a string to string function

$$
f(\text { "My red car" })=\text { "mi coche rojo" }
$$

- A particular type of transductions is the Subsequential Transductions
- are based on a DFA
- We have algorithms to deal with this type of transductions
- The OSTIA algorithm: from input-output pairs
- The Vilar algorithm: from MAT
- Sometimes we have to cope with ambiguities
$f($ "My red car" $)=$ "Mi coche (rojo + colorado + encarnado)"

Motivation

- Usually a transduction is viewed as a string to string function

$$
f(\text { "My red car" })=\text { "mi coche rojo" }
$$

- A particular type of transductions is the Subsequential Transductions
- are based on a DFA
- We have algorithms to deal with this type of transductions
- The OSTIA algorithm: from input-output pairs
- The Vilar algorithm: from MAT
- Sometimes we have to cope with ambiguities

$$
f(\text { "My red car") = "Mi coche (rojo + colorado + encarnado)" }
$$

Outline

1. Multiplicity Automata
2. Exact Learning
3. A bit of Algebra
4. Examples

Outline

1. Multiplicity Automata

2. Exact Learning

3. A bit of Algebra

4. Examples

Multiplicity Automata

- Multiplicity automata are essentially non deterministic stochastic automata with only one initial state and no restrictions to force the normalization

Definition (Multiplicity Automata)

A Multiplicity Automaton (MA) of size r, is:

- a set of $|\Sigma| r \times r$ matrices $\left\{\mu_{\sigma}: \sigma \in \Sigma\right\}$ with elements of the field \mathcal{K}
- a row-vector $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in \mathcal{K}^{r}$
- a column-vector $\gamma=\left(\gamma_{1}, \ldots, \gamma_{r}\right)^{t} \in \mathcal{K}^{r}$
- The MA A defines a function $f_{A}: \Sigma^{*} \rightarrow \mathcal{K}$ as:

$$
f_{A}\left(x_{1} \ldots x_{n}\right)=\lambda \mu_{x_{1}} \ldots \mu_{x_{n}} \gamma
$$

Multiplicity Automata Example

Let the MA A defined by:

$$
\lambda=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \mu_{a}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \mu_{b}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \gamma=\binom{0}{1}
$$

In this case:

$$
\mu(x)=\mu\left(x_{1} \ldots x_{n}\right)=\mu_{x_{1}} \ldots \mu_{x_{n}}=\left(\begin{array}{ll}
1 & \alpha \\
0 & 1
\end{array}\right)
$$

Where α is the number of times that a appears in x. Then

$$
f_{A}(x)=\lambda \mu(x) \gamma=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & \alpha \\
0 & 1
\end{array}\right)\binom{0}{1}=\alpha
$$

Let $f: \Sigma^{*} \rightarrow \mathcal{K}$ be a function.

- The Hankel matrix is an infinite matrix F each of its rows and columns are indexed by strings in Σ^{*}.
- The (x, y) entry of $F\left(F_{x, y}\right)$ contains the value $f(x y)$.

Example (a-count function)

$$
F=\left(\begin{array}{ccccccccc}
& \epsilon & a & b & a a & a b & b a & b b & \ldots \\
\epsilon & 0 & 1 & 0 & 2 & 1 & 1 & 0 & \ldots \\
a & 1 & 2 & 1 & 3 & 2 & 2 & 1 & \ldots \\
b & 0 & 1 & 0 & 2 & 1 & 1 & 0 & \ldots \\
a a & 2 & 3 & 2 & 4 & 3 & 3 & 2 & \ldots \\
a b & 1 & 2 & 1 & 3 & 2 & 2 & 1 & \ldots \\
b a & 1 & 2 & 1 & 3 & 2 & 2 & 1 & \ldots \\
b b & 0 & 1 & 0 & 2 & 1 & 1 & 0 & \ldots \\
\vdots & \ddots
\end{array}\right)
$$

Theorem (Carlyle and Paz theorem, 1971)
Let $f: \Sigma^{*} \rightarrow \mathcal{K}$ such that $f \not \equiv 0$ and let F be the corresponding Hankel matrix. Then, the size r of the smallest MA A such that $f_{A} \equiv f$ satisfies $r=\operatorname{rank}(F)$ (over the field)

Example (a-count function)
The rank is $2, F_{\epsilon}$ and F_{a} are a basis.
The other rows:

Theorem (Carlyle and Paz theorem, 1971)

Let $f: \Sigma^{*} \rightarrow \mathcal{K}$ such that $f \not \equiv 0$ and let F be the corresponding Hankel matrix. Then, the size r of the smallest MA A such that $f_{A} \equiv f$ satisfies $r=\operatorname{rank}(F)$ (over the field)

Example (a-count function)

The rank is $2, F_{\epsilon}$ and F_{a} are a basis.
The other rows:

$$
\begin{aligned}
F_{\epsilon} & =(1,0)\left(F_{\epsilon}, F_{a}\right)^{t} & F_{a}=(0,1)\left(F_{\epsilon}, F_{a}\right)^{t} \\
F_{b} & =(1,0)\left(F_{\epsilon}, F_{a}\right)^{t} & F_{a a}=(-1,2)\left(F_{\epsilon}, F_{a}\right)^{t} \\
F_{a b} & =(0,1)\left(F_{\epsilon}, F_{a}\right)^{t} & F_{b a}=(0,1)\left(F_{\epsilon}, F_{a}\right)^{t} \\
F_{b b} & =(1,0)\left(F_{\epsilon}, F_{a}\right)^{t} & \cdots
\end{aligned}
$$

Note:

Let $x_{1}=\epsilon, x_{2}, \ldots, x_{r}$ a basis of the Hankel matrix. The Theorem states that we can build the MA as:

- $\lambda=(1,0, \ldots, 0) ; \gamma=\left(f\left(x_{1}\right), \ldots, f\left(x_{r}\right)\right)$
- for every σ, define the i th row of the matrix μ_{σ} as the (unique) coefficients of the row $F_{x_{i} \sigma}$ when expressed as a linear combination of $F_{x_{1}}, \ldots, F_{x_{r}}$. That is:

$$
F_{x_{i} \sigma}=\sum_{j=1}^{r}\left[\mu_{\sigma}\right]_{i, j} F_{x_{j}}
$$

Example (a-count function)

Note:

Let $x_{1}=\epsilon, x_{2}, \ldots, x_{r}$ a basis of the Hankel matrix. The Theorem states that we can build the MA as:

- $\lambda=(1,0, \ldots, 0) ; \gamma=\left(f\left(x_{1}\right), \ldots, f\left(x_{r}\right)\right)$
- for every σ, define the i th row of the matrix μ_{σ} as the (unique) coefficients of the row $F_{x_{i} \sigma}$ when expressed as a linear combination of $F_{x_{1}}, \ldots, F_{X_{r}}$. That is:

$$
F_{x_{i} \sigma}=\sum_{j=1}^{r}\left[\mu_{\sigma}\right]_{i, j} F_{x_{j}}
$$

Example (a-count function)

$$
\gamma=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \mu_{a}=\binom{F_{\epsilon \cdot a}}{F_{a \cdot a}}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 2
\end{array}\right) \mu_{b}=\binom{F_{\epsilon \cdot b}}{F_{a \cdot b}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Note:

Let $x_{1}=\epsilon, x_{2}, \ldots, x_{r}$ a basis of the Hankel matrix. The Theorem states that we can build the MA as:

- $\lambda=(1,0, \ldots, 0) ; \gamma=\left(f\left(x_{1}\right), \ldots, f\left(x_{r}\right)\right)$
- for every σ, define the i th row of the matrix μ_{σ} as the (unique) coefficients of the row $F_{x_{i} \sigma}$ when expressed as a linear combination of $F_{x_{1}}, \ldots, F_{X_{r}}$. That is:

$$
F_{x_{i} \sigma}=\sum_{j=1}^{r}\left[\mu_{\sigma}\right]_{i, j} F_{x_{j}}
$$

Example (a-count function)

$$
\gamma=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \mu_{a}=\binom{F_{\epsilon \cdot a}}{F_{a \cdot a}}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 2
\end{array}\right) \mu_{b}=\binom{F_{\epsilon \cdot b}}{F_{a \cdot b}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Outline

1. Multiplicity Automata

2. Exact Learning

3. A bit of Algebra

4. Examples

Queries

Definition (Equivalence query)
Let f be a target function.
Given a hypothesis h, an equivalence query ($\mathrm{EQ}(h)$) returns:

- YES if $h \equiv f$
- a counterexample otherwise

Definition (Membership query)
Let f be a target function.
Given an assignment z a membership query $(\mathrm{MQ}(z))$ returns $f(z)$

Definition (Equivalence query)
Let f be a target function.
Given a hypothesis h, an equivalence query ($\mathrm{EQ}(h)$) returns:

- YES if $h \equiv f$
- a counterexample otherwise

Definition (Membership query)
Let f be a target function.
Given an assignment z a membership query $(\mathrm{MQ}(z))$ returns $f(z)$

Definition (Angluin, 1988)
Given a target function f, a learning algorithm should return a hypothesis function h equivalent to f.
In order to do so, the learner can resort to membership and equivalence queries.
We say that the learner learns a class of functions \mathcal{C}, if, for every function $f \in \mathcal{C}$, the learner outputs a hypothesis h that is equivalent to f and does so in time polynomial in the "size" of a shortest representation of f and the length of the longest counterexample.

The idea is to work with a finite version of the Hankel matrix.

Algorithm

1. initialize the matrix to null
2. build a MA using the matrix and making membership queries if necessary
3. ask an equivalence query
4. if the answer is YES then STOP
5. use the counterexample to add new rows an columns in the matrix
6. use membership queries to fill the holes in the matrix
7. Go to step 2

Outline

> 1. Multiplicity Automata
> 2. Exact Learning
3. A bit of Algebra

4. Examples

Definition (Field)

$(\mathcal{K},+, *)$ is a field if:

- Closure of \mathcal{K} under + and $* \forall a, b \in \mathcal{K}$, both $a+b$ and $a * b$ belong to \mathcal{K}
- Both + and $*$ are associative $\forall a, b, c \in \mathcal{K}, a+(b+c)=(a+b)+c$ and $a *(b * c)=(a * b) * c$.
- Both + and $*$ are commutative $\forall a, b \in \mathcal{K}, a+b=b+a$ and $a * b=b * a$.
- The operation $*$ is distributive over the operation $+\forall a, b, c \in \mathcal{K}$, $a *(b+c)=(a * b)+(a * c)$.
- Existence of an additive identity $\exists 0 \in \mathcal{K}: \forall a \in \mathcal{K}, a+0=a$.
- Existence of a multiplicative identity $\exists 1 \in \mathcal{K}, 1 \neq 0: \forall a \in \mathcal{K}, a * 1=a$.
- Existence of additive inverses $\forall a \in \mathcal{K}, \exists-a \in \mathcal{K}: a+(-a)=0$.
- Existence of multiplicative inverses $\forall a \in \mathcal{K}, a \neq 0, \exists a^{-1} \in \mathcal{K}$: $a * a^{-1}=1$.

Working with transducers

Idea:
Use the learning algorithm using:

- concatenation as the $*$ operator
- the inclusion in a (multi)set as the + operator

We are going to extend this operations in order to have a Field and be able to identify a superclass of the ambiguous rational transducers

- The concatenation is going to play the role of the multiplication.
- For each $a \in \Sigma$ let we include in Σ its inverse $\left(a^{-1}\right)$.

Example

Extended concatenation properties:

- Closure
- Associative
- Non Commutative (not good)
- Existence of a multiplicative identity (c)
- Existence of multiplicative inverses
- The concatenation is going to play the role of the multiplication.
- For each $a \in \Sigma$ let we include in Σ its inverse $\left(a^{-1}\right)$.

Example

$$
\begin{array}{rl}
a a b b & a b a^{-1} b \\
a a a^{-1} b \quad(\equiv a b) & a^{-1} b^{-1}
\end{array}
$$

Extended concatenation properties:

- Closure
- Associative
- Non Commutative (not good)
- Existence of a multiplicative identity (ϵ)
- Existence of multiplicative inverses
- The concatenation is going to play the role of the multiplication.
- For each $a \in \Sigma$ let we include in Σ its inverse $\left(a^{-1}\right)$.

Example

$$
\begin{aligned}
a a b b & \\
a a a^{-1} b & (\equiv a b)
\end{aligned}
$$

$$
\begin{aligned}
& a b a^{-1} b \\
& a^{-1} b^{-1}
\end{aligned}
$$

Extended concatenation properties:

- Closure
- Associative
- Non Commutative (not good)
- Existence of a multiplicative identity (ϵ)
- Existence of multiplicative inverses
- the multiset inclusion is going to play the role the addition
- For each multiset x let we define its inverse $(-x)$.

Example

$$
\begin{array}{rr}
a a a+b b b & a a a-a a a \\
a+a-a & (\equiv a)
\end{array}
$$

Multiset inclusion properties:

- Closure: the inclusion of a multiset into another is a multiset.
- Associative: $(x+y)+z=x+(y+z)$
- Commutative: $x+y=y+x$
- Existence of an additive identity: $x+\emptyset=x$
- Existence of additive inverses: $x+(-x)=\emptyset$
- the multiset inclusion is going to play the role the addition
- For each multiset x let we define its inverse $(-x)$.

Example

$$
\begin{array}{rrr}
a a a+b b b & a a a-a a a & (\equiv \emptyset) \\
a+a-a & (\equiv a) & -a a a
\end{array}
$$

Multiset inclusion properties:

- Closure: the inclusion of a multiset into another is a multiset.
- Associative: $(x+y)+z=x+(y+z)$
- Commutative: $x+y=y+x$
- Existence of an additive identity: $x+\theta=x$
- Existence of additive inverses: $x+(-x)=\emptyset$

Multiset inclusion extension

- the multiset inclusion is going to play the role the addition
- For each multiset x let we define its inverse $(-x)$.

Example

$$
\begin{array}{rrr}
a a a+b b b & a a a-\text { aaa } & (\equiv \emptyset) \\
a+a-a & (\equiv a) & -a a a
\end{array}
$$

Multiset inclusion properties:

- Closure: the inclusion of a multiset into another is a multiset.
- Associative: $(x+y)+z=x+(y+z)$
- Commutative: $x+y=y+x$
- Existence of an additive identity: $x+\emptyset=x$
- Existence of additive inverses: $x+(-x)=\emptyset$

Properties:

- The concatenation is distributive over the inclusion:

$$
x *(y+z)=x * y+x * z
$$

- We have a "Field" with a non commutative multiplication.
- This is known as a Divisive Ring
- But the Carlyle an Paz theorem does not use the commutativity in the multiplication!
- Their theorem is also true for Divisive Rings!
- Then the inference algorithm can be used exactly as it is just substituting:
- addition by the (extended) inclusion
- multiplication by the (extended) concatenation

Properties:

- The concatenation is distributive over the inclusion:

$$
x *(y+z)=x * y+x * z
$$

- We have a "Field" with a non commutative multiplication.
- This is known as a Divisive Ring
- But the Carlyle an Paz theorem does not use the commutativity in the multiplication!
- Their theorem is also true for Divisive Rings!
- Then the inference algorithm can be used exactly as it is just substituting:
- addition by the (extended) inclusion
- multiplication by the (extended) concatenation

Outline

1. Multiplicity Automata
2. Exact Learning
3. A bit of Algebra
4. Examples

$$
f\left(x^{n}\right)= \begin{cases}a^{n} & \text { if } n \text { is odd } \\ b^{n} & \text { if } n \text { is even }\end{cases}
$$

Text books proposal:

The Result

Applying the algorithm we obtain:

- It can be shown that for any input we obtain a plain string

Open questions:

- Does there exist a general method to simplify and compare string expressions?
- Does there exist a method to know if a multiplicity automaton produces only plain strings?
- Does there exist a method to remove complex expressions in arcs and states, possibly adding more states?

The Result

Applying the algorithm we obtain:

- It can be shown that for any input we obtain a plain string

Open questions:

- Does there exist a general method to simplify and compare string expressions?
- Does there exist a method to know if a multiplicity automaton produces only plain strings?
- Does there exist a method to remove complex expressions in arcs and states, possibly adding more states?

An ambiguous example

$$
f\left(x^{n}\right)=\sum_{i=0}^{n} a^{i}
$$

The good one

A non equivalent one

- The second transducer does not preserve the multiplicity of the strings
- Note that in the ambiguous case, the membership query should return all the possible transductions.
- Can we still be able to learn if only information about just one transduction is provided in each query?
- Does any learnable function remain learnable if the multiplicity is not taken into account?

$$
f\left(x^{n}\right)=\sum_{i=0}^{n} a^{i}
$$

The good one

- The second transducer does not preserve the multiplicity of the strings
- Note that in the ambiguous case, the membership query should return all the possible transductions.

Open questions:

- Can we still be able to learn if only information about just one transduction is provided in each query?
- Does any learnable function remain learnable if the multiplicity is not taken into account?

$$
f\left(x^{n}\right)=\sum_{i=0}^{2 n} a^{i}
$$

Applying the algorithm:

We have proposed a learning algorithm that:

- Can identify any rational fuction with output built up with
- no empty-transitions
- extended concatenations
- extended multiset inclusions
- It uses membership and equivalence queries
- As a special case, it identifies any ambiguous rational transducer (with finite output)
- It works in polynomial time (perhaps there is a problem in the parsing)

Any Questions?

