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Motivation

I Usually a transduction is viewed as a string to string function

f ("My red car") = "mi coche rojo"
I A particular type of transductions is the Subsequential Transductions

� are based on a DFA
I We have algorithms to deal with this type of transductions

� The OSTIA algorithm: from input-output pairs
� The Vilar algorithm: from MAT

I Sometimes we have to cope with ambiguities

f ("My red car") = "Mi coche ( rojo + colorado + encarnado)"
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Multiplicity Automata

I Multiplicity automata are essentially non deterministic stochastic
automata with only one initial state and no restrictions to force the
normalization

Definition (Multiplicity Automata)
A Multiplicity Automaton (MA) of size r , is:

I a set of |Σ| r × r matrices {µσ : σ ∈ Σ} with elements of the field K
I a row-vector λ = (λ1, . . . , λr ) ∈ Kr

I a column-vector γ = (γ1, . . . , γr )
t ∈ Kr

I The MA A defines a function fA : Σ∗ → K as:

fA(x1 . . . xn) = λµx1 . . . µxnγ
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Multiplicity Automata Example

Let the MA A defined by:

λ =
`
1 0

´
µa =

„
1 1
0 1

«
µb =

„
1 0
0 1

«
γ =

„
0
1

«
In this case:

µ(x) = µ(x1 . . . xn) = µx1 . . . µxn =

„
1 α
0 1

«
Where α is the number of times that a appears in x .
Then

fA(x) = λµ(x)γ =
`
1 0

´„1 α
0 1

«„
0
1

«
= α

q0

0
start

q1

1

a, b|1

a|1

a, b|1
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The Hankel Matrix

Let f : Σ∗ → K be a function.

I The Hankel matrix is an infinite matrix F each of its rows and columns
are indexed by strings in Σ∗.

I The (x , y) entry of F (Fx,y ) contains the value f (xy).

Example (a-count function)

F =

0BBBBBBBBBBBBB@

ε a b aa ab ba bb . . .
ε 0 1 0 2 1 1 0 . . .
a 1 2 1 3 2 2 1 . . .
b 0 1 0 2 1 1 0 . . .
aa 2 3 2 4 3 3 2 . . .
ab 1 2 1 3 2 2 1 . . .
ba 1 2 1 3 2 2 1 . . .
bb 0 1 0 2 1 1 0 . . .
...

...
...

...
...

...
...

...
. . .

1CCCCCCCCCCCCCA
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Carlyle and Paz theorem [1971]

Theorem (Carlyle and Paz theorem, 1971)
Let f : Σ∗ → K such that f 6≡ 0 and let F be the corresponding Hankel matrix.
Then, the size r of the smallest MA A such that fA ≡ f satisfies r = rank(F )
(over the field)

Example (a-count function)
The rank is 2, Fε and Fa are a basis.
The other rows:

Fε = (1, 0)(Fε,Fa)t Fa = (0, 1)(Fε,Fa)t

Fb = (1, 0)(Fε,Fa)t Faa = (−1, 2)(Fε,Fa)t

Fab = (0, 1)(Fε,Fa)t Fba = (0, 1)(Fε,Fa)t

Fbb = (1, 0)(Fε,Fa)t . . .
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Carlyle and Paz theorem [1971]

Note:
Let x1 = ε, x2, . . . , xr a basis of the Hankel matrix. The
Theorem states that we can build the MA as:

I λ = (1, 0, . . . , 0); γ = (f (x1), . . . , f (xr ))

I for every σ, define the i th row of the matrix µσ as the
(unique) coefficients of the row Fxiσ when expressed
as a linear combination of Fx1 , . . . ,Fxr . That is:

Fxiσ =
rX

j=1

[µσ]i,jFxj

q0

0

q1

1

b|1

a|1a| − 1

a|2, b|1

Example (a-count function)

γ =
`
1 0

´
µa =

„
Fε·a
Fa·a

«
=

„
0 1
−1 2

«
µb =

„
Fε·b
Fa·b

«
=

„
1 0
0 1

«
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Queries

Definition (Equivalence query)
Let f be a target function.
Given a hypothesis h, an equivalence query (EQ(h)) returns:

I YES if h ≡ f
I a counterexample otherwise

Definition (Membership query)
Let f be a target function.
Given an assignment z a membership query (MQ(z)) returns f (z)
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The exact learning model

Definition (Angluin, 1988)
Given a target function f , a learning algorithm should return a hypothesis
function h equivalent to f .
In order to do so, the learner can resort to membership and equivalence
queries.
We say that the learner learns a class of functions C, if, for every function
f ∈ C, the learner outputs a hypothesis h that is equivalent to f and does so in
time polynomial in the “size” of a shortest representation of f and the length
of the longest counterexample.
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The MA Learning Algorithm [Beimel et all, 00]

The idea is to work with a finite version of the Hankel matrix.

Algorithm

1. initialize the matrix to null

2. build a MA using the matrix and making membership queries if
necessary

3. ask an equivalence query

4. if the answer is YES then STOP

5. use the counterexample to add new rows an columns in the matrix

6. use membership queries to fill the holes in the matrix

7. Go to step 2
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What is a Field?

Definition (Field)
(K,+, ∗) is a field if:

I Closure of K under + and ∗ ∀a, b ∈ K, both a + b and a ∗ b belong to K
I Both + and ∗ are associative ∀a, b, c ∈ K, a + (b + c) = (a + b) + c and

a ∗ (b ∗ c) = (a ∗ b) ∗ c.
I Both + and ∗ are commutative ∀a, b ∈ K, a + b = b + a and a ∗b = b ∗a.
I The operation ∗ is distributive over the operation + ∀a, b, c ∈ K,

a ∗ (b + c) = (a ∗ b) + (a ∗ c).
I Existence of an additive identity ∃0 ∈ K: ∀a ∈ K, a + 0 = a.
I Existence of a multiplicative identity ∃1 ∈ K, 1 6= 0: ∀a ∈ K, a ∗ 1 = a.
I Existence of additive inverses ∀a ∈ K, ∃ − a ∈ K: a + (−a) = 0.
I Existence of multiplicative inverses ∀a ∈ K, a 6= 0, ∃a−1 ∈ K:

a ∗ a−1 = 1.
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Working with transducers

Idea:
Use the learning algorithm using:

I concatenation as the ∗ operator
I the inclusion in a (multi)set as the + operator

We are going to extend this operations in order to have a Field and be able to
identify a superclass of the ambiguous rational transducers
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Concatenation extension

I The concatenation is going to play the role of the multiplication.
I For each a ∈ Σ let we include in Σ its inverse (a−1).

Example

aabb aba−1b

aaa−1b (≡ ab) a−1b−1

Extended concatenation properties:

I Closure
I Associative
I Non Commutative (not good)
I Existence of a multiplicative identity (ε)
I Existence of multiplicative inverses
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Multiset inclusion extension

I the multiset inclusion is going to play the role the addition
I For each multiset x let we define its inverse (−x).

Example

aaa + bbb aaa− aaa (≡ ∅)
a + a− a (≡ a) −aaa

Multiset inclusion properties:

I Closure: the inclusion of a multiset into another is a multiset.
I Associative: (x + y) + z = x + (y + z)

I Commutative: x + y = y + x
I Existence of an additive identity: x + ∅ = x
I Existence of additive inverses: x + (−x) = ∅
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Combining concatenation and inclusion

Properties:

I The concatenation is distributive over the inclusion:
x ∗ (y + z) = x ∗ y + x ∗ z

I We have a “Field” with a non commutative multiplication.
I This is known as a Divisive Ring
I But the Carlyle an Paz theorem does not use the commutativity in the

multiplication!
I Their theorem is also true for Divisive Rings!
I Then the inference algorithm can be used exactly as it is just

substituting:
� addition by the (extended) inclusion
� multiplication by the (extended) concatenation
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Non ambiguous, non subsequential example

f (xn) =

(
an if n is odd
bn if n is even

Text books proposal:

q0

εstart

q1

ε

q2

∅

q3

∅

q4

ε

x |a

x |b

x |a

x |b

x |a

x |b
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The Result

Applying the algorithm we obtain:

q1

εstart
q1

a
q2

bb

q3

aaa
x |ε x |ε x |ε

x |b4 − (a4 − b4)(a2 − b2)−1b2

x |(a4 − b4)(a2 − b2)−1

I It can be shown that for any input we obtain a plain string

Open questions:

I Does there exist a general method to simplify and compare string
expressions?

I Does there exist a method to know if a multiplicity automaton produces
only plain strings?

I Does there exist a method to remove complex expressions in arcs and
states, possibly adding more states?
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An ambiguous example

f (xn) =
nX

i=0

ai

The good one

q0

εstart
q1

ε+ a

x |ε

x |ε+ a

x | − a

A non equivalent one

q0

εstart

x |ε+ a

I The second transducer does not preserve the multiplicity of the strings
I Note that in the ambiguous case, the membership query should return

all the possible transductions.

Open questions:

I Can we still be able to learn if only information about just one
transduction is provided in each query?

I Does any learnable function remain learnable if the multiplicity is not
taken into account?
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Another ambiguous example

f (xn) =
2nX

i=0

ai

Applying the algorithm:

q0

εstart
q1P2
i=0 ai

q2P4
i=0 ai

x |ε x |ε

x |ε+ a2

x | − a2
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Conclusions

We have proposed a learning algorithm that:
I Can identify any rational fuction with output built up with

� no empty-transitions
� extended concatenations
� extended multiset inclusions

I It uses membership and equivalence queries
I As a special case, it identifies any ambiguous rational transducer (with

finite output)
I It works in polynomial time (perhaps there is a problem in the parsing)
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Any Questions?
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