
Polynomial
distinguishability of

timed automata

Sicco Verwer, Mathijs de Weerdt, Cees Witteveen

1

Overview

• Deterministic timed automata (DTAs)

• Polynomial distinguishability

• DTAs are not polynomially distinguishable

• Neither are DTAs with only two clocks (2-DTAs)

• But DTAs with a single clock (1-DTAs) are

• Conclusions and future work

2

DTAs

3

1 2 3

a
reset x

a
reset y

b
x ! 4 ∧ y " 5

4

a
reset x

b
reset x

DTAs

4

accepts: (a, 1)(a, 2)(a, 3)(b, 4) rejects: (a, 1)(a, 2)(a, 1)(b, 2)

1 2 3

a
reset x

a
reset y

b
x ! 4 ∧ y " 5

4

a
reset x

b
reset x

DTAs

5

rejects: (a, t)(a, t’)(b, t’’) for any t, t’, t’’
because x is reset before y in such a path

1 2 3

a
reset x

a
reset y

b
x ! 4 ∧ y " 5

4

a
reset x

b
reset x

DTAs
• A deterministic timed automaton (DTA):

- A deterministic finite state automaton (DFA)

- A set of clocks X

- A clock guard (constraint) g for every transition d

- A set of clock resets R for every transition d

• Timed properties:

- All clocks increase their values synchronously

- A clock value can be reset to 0

- A transition can fire if its clock guard is satisfied

6

Why learn DTAs?

• DTAs:

- Use an explicit time representation (using numbers)

- Are intuitive models for many real-time systems

- Are used to model and verify reactive systems

• In practice it is often difficult to construct DTAs by
hand, but data is easy to obtain:

- We want to identify them from data

7

Why learn DTAs?

• Any timed system can also be represented using an
implicit time representation, using DFAs or HMMs

- Exponential blowup of the models and the data
required for learning

- Inefficient in the size of the timed data and the timed
model

• We want to learn DTAs directly from timed data

- Is it possible to do so efficiently?

8

Polynomial Distinguishability
• A class of (timed) automata C is polynomially

distinguishable if:

- there exists a polynomial p() such that for any two
(timed) automata A C and A’ C, there exists a
(timed) string s such that:

- s L(A) and s L(A’), or vice versa, and

- |s| is bounded by p(|A| + |A’|)

• If C is efficiently identifiable in the limit (from
polynomial time and data), then C is polynomially
distinguishable

9

∈∈

∈ ∈

Overview

• Deterministic timed automata (DTAs)

• Polynomial distinguishability

• DTAs are not polynomially distinguishable

• Neither are DTAs with only two clocks (2-DTAs)

• But DTAs with a single clock (1-DTAs) are

• Conclusions and future work

10

DTAs are not pol. dist.

11

1

4

3
b

x ! 1, reset y

d

x "2
n

! y ! 1
2

a
reset x

c
y ! 1, reset y

4

This DTA requires a timed string of exponential
length in order to end in state 4

DTAs are not pol. dist.

12

1

4

3
b

x ! 1, reset y

d

x "2
n

! y ! 1
2

a
reset x

c
y ! 1, reset y

4

accepts only (a, t)(b, t’)(c, t1)...(c, tm)(d, t’’) where:
all t’, t’’, t1, ..., tm ≤ 1 and ∑ t1, ..., tm ≥ 2n,

hence, it has to hold that: m ≥ 2n

DTAs are not pol. dist.

13

1

4

3
b

x ! 1, reset y

d

x "2
n

! y ! 1
2

a
reset x

c
y ! 1, reset y

4

We cannot polynomially bound the size of the shortest
string that distinguishes these DTAs (for different n)

from a DTA accepting the empty language

2-DTAs are not pol. dist.

14

1

4

3
b

x ! 1, reset y

d

x "2
n

! y ! 1
2

a
reset x

c
y ! 1, reset y

4

These DTAs only require 2 clocks!

Overview

• Deterministic timed automata (DTAs)

• Polynomial distinguishability

• DTAs are not polynomially distinguishable

• Neither are DTAs with only two clocks (2-DTAs)

• But DTAs with a single clock (1-DTAs) are

• Conclusions and future work

15

1-DTAs

• An 1-DTA is a DTA with one clock x

• The DTAs we used to prove the non-polynomial
distinguishability of DTAs require at least two clocks

• Are 1-DTAs polynomially distinguishable?

16

Distinguishing two 1-DTAs

17

1 4

3

2 1

43

21

4

4

Does it hold that for any two DTAs, the size of a
shortest timed string in the language of one and not in

the language of the other is of polynomial length?

Distinguishing two 1-DTAs

18

1 4

3

2 1

43

21

4

4

Such a shortest timed string can follow different
execution paths in the two 1-DTAs

Timed states

19

1 4

3

2 1

43

21

4

4

There has to exist a polynomial p() that bounds
 the length of a shortest timed string that
 ends in any reachable timed state (q,v)

Timed states

• A timed state (q, v) is a pair:

- a state q from a TA

- a valuation v : X ⇒ maps clocks to time values

• A timed state (q, v) is reachable if there exists a
timed string that ends in (q, v)

20

N

Timed states

21

(a, 1)(a, 2)(a, 3)(b, 4) ends in state 4 with
a valuation v such that v(x) = 4 and v(y) = 7

1 2 3

a
reset x

a
reset y

b
x ! 4 ∧ y " 5

4

a
reset x

b
reset x

1-DTAs are pol. reachable

• Given a 1-DTA, let s be a shortest timed string that
ends in some reachable timed state (q,v)

• It holds that:

- a pair of prefixes si and sj cannot end in the same
timed state (q’, v’)

- every si ends in (q’,v’) with v’(x) = 0 at most once

- x is reset at most |Q| times in the path of s

22

1-DTAs are pol. reachable
• When a timed string ends in (q’, v’), then an 1-DTA

can reach (q’, v’’) with v’’(x) ≥ v’(x) by waiting some
time in q’

• For a shortest string s that reaches (q, v):

- if si ends in (q’, v’) and sj ends in (q’, v’’), with j > i, then
it has to hold that v’’(x) < v’(x)

- if si ends in (q’, v’) and sj ends in (q’, v’’), then it has to
hold that x is reset between index i and j

- the amount of prefixes that end in (q’, v’) for any v’ is
bounded by the number of resets of x

23

1-DTAs are pol. reachable

• A shortest string s that reaches (q, v) is of length
bounded by:

- |Q| ∗ the number of resets of x

- |Q| ∗ |Q|

- a polynomial in the size of the 1-DTA

• Hence, 1-DTAs are polynomially reachable

24

1-DTAs are pol. dist.

25

1 4

3

2 1

43

21

4

4

A specific combination of timed states (q,v) in one
and (q’,v’) in the other has to be reached

1-DTAs are pol. dist.

• Given two 1-DTAs, let s be a shortest timed string
that reaches (q1, v1) in one and (q2, v2) in the other

• It holds that:

- a pair of prefixes si and sj cannot end in the same
combination of timed state (q1’, v1’) and (q2’, v2’)

- an 1-DTA can reach (qn’, vn’’) with vn’’(x) ≥ vn’(x) by
waiting some time in qn’

- x is reset between index i and j in one of the two 1-
DTAs

26

1-DTAs are pol. dist.

• A shortest string s that reaches (q1, v1) and (q2, v2) is
of length bounded by:

- |Q| ∗ |Q’| ∗ the number of resets of x

• In the paper, we use structural properties of 1-DTAs
to polynomially bound the number of resets of x

• 1-DTAs are polynomially distinguishable

27

Overview

• Deterministic timed automata (DTAs)

• Polynomial distinguishability

• DTAs are not polynomially distinguishable

• Neither are DTAs with only two clocks (2-DTAs)

• But DTAs with a single clock (1-DTAs) are

• Conclusions and future work

28

Conclusions

• DTAs are an intuitive representation for real-time
systems

• They are more compact (efficient) than DFA or
HMM representations of the same systems

• Unfortunately, DTAs can in general not be identified
efficiently since they are not polynomially
distinguishable

• However, 1-DTAs are polynomially distinguishable

29

Future work

• Show that 1-DTAs are efficiently identifiable in the
limit (soon to be submitted)

• Try to find multi-clock subclasses of DTAs that are
polynomially distinguishable

• Determine whether a DTA identification algorithm
could be used to identify 1-DTAs efficiently

• ...

30

Questions

• ?

31

1-DTAs are pol. dist.

32

1 4

3

2 1

43

21

4

4

(q, v) with v(x) = 0
(q, v) with v(x) = 0
(q, v) with v(x) = 0

(q’, v’) with v’(x) = a
(q’, v’’) with v’’(x) = b
(q’, v’’’) with v’’’(x) = c

Suppose s visits in order

1-DTAs are pol. dist.

33

time

time

+

a

+

b

-

c

+

0

0

Whether following the last path leads to a final state is
plotted along a time axis

1-DTAs are pol. dist.

34

time

time

+

a

+

b

-

c

+

0

0

There exists no shorter distinguishing string
Following the final path earlier cannot distinguish one

1-DTA from the other

1-DTAs are pol. dist.

35

This also holds for first waiting and
then following the final path

time

time

+

a

+

b

-

c

+

0

0

b-a

1-DTAs are pol. dist.

36

This also holds for first waiting and
then following the final path

time

time

+

a

+

b

-

c

+

0

0

+

b-a

1-DTAs are pol. dist.

37

This also holds for first waiting and
then following the final path

time

time

+

a

+

b

-

c

+

0

0

+

b-a

-

c-a

1-DTAs are pol. dist.

38

This also holds for first waiting and
then following the final path

time

time

+

a

+

b

-

c

+

0

0

+

b-a

-

c-a

-

c-b

1-DTAs are pol. dist.

39

Waiting and following the final path leads to these values
in the bottom 1-DTA

time

time

+

a

+

b

-

c

+

0

0

+

b-a

-

c-a

-

c-b

1-DTAs are pol. dist.

40

We can also wait in the top 1-DTA

time

time

+

a

+

b

-

c

+

0

0

+

b-a

-

c-a

-

c-b

+

2b-a

1-DTAs are pol. dist.

41

This leads to new known values in the bottom 1-DTA

time

time

+

a

+

b

-

c

+

0

0

+

b-a

-

c-a

-

c-b

+

2b-a

+

2b

1-DTAs are pol. dist.

42

This can be continued infinitely

time

time

+

a

+

b

-

c

+

0

0

+

b-a

-

c-a

-

c-b

+

2b-a

+

2b

+

3b

1-DTAs are pol. dist.

43

This can be continued infinitely

time

time

+

a

+

b

-

c

+

0

0

+

b-a

-

c-a

-

c-b

+

2b-a

+

2b

+

3b

+

3b - a

1-DTAs are pol. dist.

44

This can be continued infinitely

time

time

+

a

+

b

-

c

+

0

0

+

b-a

-

c-a

-

c-b

+

2b-a

+

2b

+

3b

+

3b - a

+

4b-a

+

5b

+

6b - a

+

4b

+

5b - a

1-DTAs are pol. dist.

45

Also for negative values

time

time

+

a

+

b

-

c

+

0

0

+

b-a

-

c-a

-

c-b

+

2b-a

-

c+b

-

c+b-a

-

c+2b - a

-

c+2b

-

c+3b-a

-

c+3b

1-DTAs are pol. dist.

46

Such an infinite change from positive to negative and vice
versa cannot be modeled by an 1-DTA!

time

time

+

a

+

b

-

c

+

0

0

+

b-a

-

c-a

-

c-b

+

2b-a

-

c+b

-

c+b-a

-

c+2b - a

-

c+2b

-

c+3b-a

-

c+3b

