Polynomial distinguishability of timed automata

Sicco Verwer, Mathijs de Weerdt, Cees Witteveen

Overview

- Deterministic timed automata (DTAs)
- Polynomial distinguishability
- DTAs are not polynomially distinguishable
- Neither are DTAs with only two clocks (2-DTAs)
- But DTAs with a single clock (I-DTAs) are
- Conclusions and future work

accepts: (a, I)(a, 2)(a, 3)(b, 4) rejects: (a, I)(a, 2)(a, I)(b, 2)

rejects: (a, t)(a, t')(b, t") for any t, t', t" because x is reset before y in such a path

DTAs

- A deterministic timed automaton (DTA):
 - A deterministic finite state automaton (DFA)
 - A set of clocks X
 - A clock guard (constraint) g for every transition d
 - A set of clock resets R for every transition d
- Timed properties:
 - All clocks increase their values synchronously
 - A clock value can be reset to 0
 - A transition can fire if its clock guard is satisfied

Why learn DTAs?

• DTAs:

- Use an explicit time representation (using numbers)
- Are intuitive models for many real-time systems
- Are used to model and verify reactive systems
- In practice it is often difficult to construct DTAs by hand, but data is easy to obtain:
 - We want to identify them from data

Why learn DTAs?

- Any timed system can also be represented using an implicit time representation, using DFAs or HMMs
 - Exponential blowup of the models and the data required for learning
 - Inefficient in the size of the timed data and the timed model
- We want to learn DTAs directly from timed data
 - Is it possible to do so efficiently?

Polynomial Distinguishability

- A class of (timed) automata C is polynomially distinguishable if:
 - there exists a polynomial p() such that for any two (timed) automata $A \in C$ and $A' \in C$, there exists a (timed) string s such that:
 - s \in L(A) and s \in L(A'), or vice versa, and
 - |s| is bounded by p(|A| + |A'|)
- If C is efficiently identifiable in the limit (from polynomial time and data), then C is polynomially distinguishable

Overview

- Deterministic timed automata (DTAs)
- Polynomial distinguishability
- DTAs are not polynomially distinguishable
- Neither are DTAs with only two clocks (2-DTAs)
- But DTAs with a single clock (I-DTAs) are
- Conclusions and future work

This DTA requires a timed string of exponential length in order to end in state 4

We cannot polynomially bound the size of the shortest string that distinguishes these DTAs (for different n) from a DTA accepting the empty language

These DTAs only require 2 clocks!

Overview

- Deterministic timed automata (DTAs)
- Polynomial distinguishability
- DTAs are not polynomially distinguishable
- Neither are DTAs with only two clocks (2-DTAs)
- But DTAs with a single clock (I-DTAs) are
- Conclusions and future work

I-DTAs

- An I-DTA is a DTA with one clock x
- The DTAs we used to prove the non-polynomial distinguishability of DTAs require at least two clocks
- Are I-DTAs polynomially distinguishable?

Does it hold that for any two DTAs, the size of a shortest timed string in the language of one and not in the language of the other is of polynomial length?

Such a shortest timed string can follow different execution paths in the two I-DTAs

Timed states

There has to exist a polynomial p() that bounds the length of a shortest timed string that ends in any reachable timed state (q,v)

Timed states

- A timed state (q, v) is a pair:
 - a state q from a TA
 - a valuation $v : X \Rightarrow \mathbb{N}$ maps clocks to time values
- A timed state (q, v) is reachable if there exists a timed string that ends in (q, v)

Timed states

(a, I)(a, 2)(a, 3)(b, 4) ends in state 4 with a valuation v such that v(x) = 4 and v(y) = 7

I-DTAs are pol. reachable

- Given a I-DTA, let s be a shortest timed string that ends in some reachable timed state (q,v)
- It holds that:
 - a pair of prefixes s_i and s_j cannot end in the same timed state (q', v')
 - every s_i ends in (q',v') with v'(x) = 0 at most once
 - x is reset at most |Q| times in the path of s

I-DTAs are pol. reachable

- When a timed string ends in (q', v'), then an I-DTA can reach (q', v'') with v''(x) ≥ v'(x) by waiting some time in q'
- For a shortest string s that reaches (q, v):
 - if s_i ends in (q', v') and s_j ends in (q', v''), with j > i, then it has to hold that v''(x) < v'(x)
 - if s_i ends in (q', v') and s_j ends in (q', v''), then it has to hold that x is reset between index i and j
 - the amount of prefixes that end in (q', v') for any v' is bounded by the number of resets of x

I-DTAs are pol. reachable

- A shortest string s that reaches (q, v) is of length bounded by:
 - |Q| * the number of resets of x
 - |Q| * |Q|
 - a polynomial in the size of the I-DTA
- Hence, I-DTAs are polynomially reachable

A specific combination of timed states (q,v) in one and (q',v') in the other has to be reached

I-DTAs are pol. dist.

- Given two 1-DTAs, let s be a shortest timed string that reaches (q_1, v_1) in one and (q_2, v_2) in the other
- It holds that:
 - a pair of prefixes s_i and s_j cannot end in the same combination of timed state (q_1', v_1') and (q_2', v_2')
 - an I-DTA can reach (q_n', v_n'') with $v_n''(x) \ge v_n'(x)$ by waiting some time in q_n'
 - x is reset between index i and j in one of the two I DTAs

I-DTAs are pol. dist.

- A shortest string s that reaches (q1, v1) and (q2, v2) is of length bounded by:
 - |Q| * |Q'| * the number of resets of x
- In the paper, we use structural properties of I-DTAs to polynomially bound the number of resets of x
- I-DTAs are polynomially distinguishable

Overview

- Deterministic timed automata (DTAs)
- Polynomial distinguishability
- DTAs are not polynomially distinguishable
- Neither are DTAs with only two clocks (2-DTAs)
- But DTAs with a single clock (I-DTAs) are
- Conclusions and future work

Conclusions

- DTAs are an intuitive representation for real-time systems
- They are more compact (efficient) than DFA or HMM representations of the same systems
- Unfortunately, DTAs can in general not be identified efficiently since they are not polynomially distinguishable
- However, I-DTAs are polynomially distinguishable

Future work

- Show that I-DTAs are efficiently identifiable in the limit (soon to be submitted)
- Try to find multi-clock subclasses of DTAs that are polynomially distinguishable
- Determine whether a DTA identification algorithm could be used to identify I-DTAs efficiently

Questions

• ?

I-DTAs are pol. dist.

Suppose s visits in order

(q, v) with v(x) = 0(q, v) with v(x) = 0(q, v) with v(x) = 0

(q', v') with v'(x) = a(q', v'') with v''(x) = b(q', v''') with v'''(x) = c

Whether following the last path leads to a final state is plotted along a time axis

There exists no shorter distinguishing string Following the final path earlier cannot distinguish one I-DTA from the other

This also holds for first waiting and then following the final path

This also holds for first waiting and then following the final path

This also holds for first waiting and then following the final path

This also holds for first waiting and then following the final path

Waiting and following the final path leads to these values in the bottom I-DTA

We can also wait in the top I-DTA

This leads to new known values in the bottom I-DTA

This can be continued infinitely

Such an infinite change from positive to negative and vice versa cannot be modeled by an I-DTA!

