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Overview

• Deterministic timed automata (DTAs)

• Polynomial distinguishability

• DTAs are not polynomially distinguishable

• Neither are DTAs with only two clocks (2-DTAs)

• But DTAs with a single clock (1-DTAs) are

• Conclusions and future work
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DTAs
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DTAs
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accepts: (a, 1)(a, 2)(a, 3)(b, 4) rejects: (a, 1)(a, 2)(a, 1)(b, 2)
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DTAs
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rejects: (a, t)(a, t’)(b, t’’) for any t, t’, t’’
because x is reset before y in such a path
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DTAs
• A deterministic timed automaton (DTA):

- A deterministic finite state automaton (DFA)

- A set of clocks X

- A clock guard (constraint) g for every transition d

- A set of clock resets R for every transition d

• Timed properties:

- All clocks increase their values synchronously

- A clock value can be reset to 0

- A transition can fire if its clock guard is satisfied
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Why learn DTAs?

• DTAs:

- Use an explicit time representation (using numbers)

- Are intuitive models for many real-time systems

- Are used to model and verify reactive systems

• In practice it is often difficult to construct DTAs by 
hand, but data is easy to obtain:

- We want to identify them from data
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Why learn DTAs?

• Any timed system can also be represented using an 
implicit time representation, using DFAs or HMMs

- Exponential blowup of the models and the data 
required for learning

- Inefficient in the size of the timed data and the timed 
model

• We want to learn DTAs directly from timed data

- Is it possible to do so efficiently?
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Polynomial Distinguishability
• A class of (timed) automata C is polynomially 

distinguishable if:

- there exists a polynomial p() such that for any two 
(timed) automata A    C and A’    C, there exists a 
(timed) string s such that:

- s     L(A) and s    L(A’), or vice versa, and

- |s| is bounded by p(|A| + |A’|)

• If C is efficiently identifiable in the limit (from 
polynomial time and data), then C is polynomially 
distinguishable
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DTAs are not pol. dist.
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reset x

c
y ! 1, reset y 

4

This DTA requires a timed string of exponential 
length in order to end in state 4



DTAs are not pol. dist.

12

1

4

3
b

x ! 1, reset y

d

x "2
n 

! y ! 1
2

a
reset x
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y ! 1, reset y 

4

accepts only (a, t)(b, t’)(c, t1)...(c, tm)(d, t’’) where:
all t’, t’’, t1, ..., tm ≤ 1 and ∑ t1, ..., tm ≥ 2n,

hence, it has to hold that: m ≥ 2n



DTAs are not pol. dist.
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We cannot polynomially bound the size of the shortest 
string that distinguishes these DTAs (for different n) 

from a DTA accepting the empty language



2-DTAs are not pol. dist.
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These DTAs only require 2 clocks!
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1-DTAs

• An 1-DTA is a DTA with one clock x

• The DTAs we used to prove the non-polynomial 
distinguishability of DTAs require at least two clocks

• Are 1-DTAs polynomially distinguishable?
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Distinguishing two 1-DTAs
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Does it hold that for any two DTAs, the size of a 
shortest timed string in the language of one and not in 

the language of the other is of polynomial length?



Distinguishing two 1-DTAs
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Such a shortest timed string can follow different 
execution paths in the two 1-DTAs



Timed states
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There has to exist a polynomial p() that bounds
 the length of a shortest timed string that
 ends in any reachable timed state (q,v)



Timed states

• A timed state (q, v) is a pair:

- a state q from a TA

- a valuation v : X ⇒      maps clocks to time values

• A timed state (q, v) is reachable if there exists a 
timed string that ends in (q, v)
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Timed states
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(a, 1)(a, 2)(a, 3)(b, 4) ends in state 4 with
a valuation v such that v(x) = 4 and v(y) = 7
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a
reset x

a
reset y 

b
x ! 4 ∧ y " 5
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a
reset x 

b
reset x 



1-DTAs are pol. reachable

• Given a 1-DTA, let s be a shortest timed string that 
ends in some reachable timed state (q,v)

• It holds that:

- a pair of prefixes si and sj cannot end in the same 
timed state (q’, v’)

- every si ends in (q’,v’) with v’(x) = 0 at most once

- x is reset at most |Q| times in the path of s
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1-DTAs are pol. reachable
• When a timed string ends in (q’, v’), then an 1-DTA 

can reach (q’, v’’) with v’’(x) ≥ v’(x) by waiting some 
time in q’

• For a shortest string s that reaches (q, v):

- if si ends in (q’, v’) and sj ends in (q’, v’’), with j > i, then 
it has to hold that v’’(x) < v’(x)

- if si ends in (q’, v’) and sj ends in (q’, v’’), then it has to 
hold that x is reset between index i and j

- the amount of prefixes that end in (q’, v’) for any v’ is 
bounded by the number of resets of x
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1-DTAs are pol. reachable

• A shortest string s that reaches (q, v) is of length  
bounded by:

- |Q| ∗ the number of resets of x 

- |Q| ∗ |Q|

- a polynomial in the size of the 1-DTA

• Hence, 1-DTAs are polynomially reachable
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1-DTAs are pol. dist.
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A specific combination of timed states (q,v) in one
and (q’,v’) in the other has to be reached



1-DTAs are pol. dist.

• Given two 1-DTAs, let s be a shortest timed string 
that reaches (q1, v1) in one and (q2, v2) in the other

• It holds that:

- a pair of prefixes si and sj cannot end in the same 
combination of timed state (q1’, v1’) and (q2’, v2’)

- an 1-DTA can reach (qn’, vn’’) with vn’’(x) ≥ vn’(x) by 
waiting some time in qn’

- x is reset between index i and j in one of the two 1-
DTAs
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1-DTAs are pol. dist.

• A shortest string s that reaches (q1, v1) and (q2, v2) is 
of length bounded by:

- |Q| ∗ |Q’| ∗ the number of resets of x

• In the paper, we use structural properties of 1-DTAs 
to polynomially bound the number of resets of x

• 1-DTAs are polynomially distinguishable
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Conclusions

• DTAs are an intuitive representation for real-time 
systems

• They are more compact (efficient) than DFA or 
HMM representations of the same systems

• Unfortunately, DTAs can in general not be identified 
efficiently since they are not polynomially 
distinguishable

• However, 1-DTAs are polynomially distinguishable

29



Future work

• Show that 1-DTAs are efficiently identifiable in the 
limit (soon to be submitted)

• Try to find multi-clock subclasses of DTAs that are 
polynomially distinguishable

• Determine whether a DTA identification algorithm 
could be used to identify 1-DTAs efficiently

• ...
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Questions

• ?
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1-DTAs are pol. dist.
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(q, v) with v(x) = 0 
(q, v) with v(x) = 0 
(q, v) with v(x) = 0 

(q’, v’) with v’(x) = a 
(q’, v’’) with v’’(x) = b 
(q’, v’’’) with v’’’(x) = c 

Suppose s visits in order



1-DTAs are pol. dist.
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1-DTAs are pol. dist.
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There exists no shorter distinguishing string
Following the final path earlier cannot distinguish one

1-DTA from the other



1-DTAs are pol. dist.
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This also holds for first waiting and 
then following the final path
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1-DTAs are pol. dist.
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This also holds for first waiting and 
then following the final path
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1-DTAs are pol. dist.
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then following the final path

time

time

+

a

+

b

-

c

+

0

0

+

b-a

-

c-a



1-DTAs are pol. dist.
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This also holds for first waiting and 
then following the final path
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1-DTAs are pol. dist.
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Waiting and following the final path leads to these values 
in the bottom 1-DTA
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1-DTAs are pol. dist.
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We can also wait in the top 1-DTA

time

time

+

a

+

b

-

c

+

0

0

+

b-a

-

c-a

-

c-b

+

2b-a



1-DTAs are pol. dist.
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This leads to new known values in the bottom 1-DTA
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1-DTAs are pol. dist.
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This can be continued infinitely
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1-DTAs are pol. dist.
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This can be continued infinitely
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1-DTAs are pol. dist.
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This can be continued infinitely
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1-DTAs are pol. dist.
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Also for negative values
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1-DTAs are pol. dist.
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Such an infinite change from positive to negative and vice 
versa cannot be modeled by an 1-DTA!
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